Délky period převrácených hodnot prvočísel/Statistika/Statistika soustavy o základu 11
Tato stránka není ještě hotová.
Tato stránka je součástí databáze a projektu: | |
{cs}
| |
Příslušnost: Kusurija |
Informace zde (na této stránce) uvedené byly známy již na úsvitu (psaných) dějin. Některé z údajů, uvedené na odsud odkazovaných stránkách však byly zjištěny mnohem později, některé chybí dosud. Spolupráce s kolemjdoucími (doplnění, design a pod.) je vítána, ovšem raději zde, na diskusní stránce.
Délky period převrácených hodnot prvočísel patří mezi důležité vlastnosti prvočísel.
Délka periody převrácené hodnoty
editovatNa základních školách se v této otázce můžeme někdy setkat s nezcela přesnou a nepřesně vymezující oblast "účinnosti" základní/"kardinální" poučkou: "Délka periody převrácené hodnoty prvočísla je rovna toto prvočíslo mínus jedna." Tyto statistiky mají ukázat míru, do které se tato poučka v reálu naplňuje/nenaplňuje.
Použité symboly, pojmy aj.
editovat- k - "kořen" prvočísla, t. j. největší možná délka periody převrácené hodnoty (p - 1)
- kořen (značka: k): k = p - 1. Maximální možná délka periody převrácené hodnoty prvočísla.
- p - značka pro prvočíslo (obecně používaná)
- l - (konkrétní) délka periody převrácené hodnoty prvočísla
- f - w:faktor/prvočíselný rozklad
- k∙l -1 - relativní délka periody převrácené hodnoty prvočísla vzhledem k danému prvočíslu, t. j. kolikráte je kratší, než může maximálně být [v jiné číselné soustavě]
- χ - „charakteristika prvočísla“: faktorizace k napovídá, jakých délek může (a jakých nemůže) dosahovat perioda; χ je nejmenší základ číselné soustavy, ve které je délka periody převrácené hodnoty prvočísla maximální (pokud k je dělitelné čtyřmi [bez hvězdičky]) respektive poloviční, než maximální (to pokud k je dělitelné dvěma, ale ne čtyřmi [označeno hvězdičkou]). V těchto číselných soustavách se dá vypočítat základ číselné soustavy, v níž je l n-krát kratší (resp. seznam takových základů), což v číselné soustavě o jiném základě, kde je l kratší, by bylo podstatně složitější až nemožné.
Tabulka pro první desítku prvočísel
editovatPoř. č. |
p10 | f k | k∙l -1 | p11 | χ |
---|---|---|---|---|---|
1 | 2 | 1 | 1 | 2 | 3** |
2 | 3 | 2 | 1 | 3 | 2* |
3 | 5 | 2^2 | 4 | 5 | 2 |
4 | 7 | 2x3 | 2 | 7 | 2* |
5 | 11 | 2x5 | 0 | 10 | 3* |
6 | 13 | 2^2x3 | 1 | 12 | 2 |
7 | 17 | 2^4 | 1 | 16 | 3 |
8 | 19 | 2x3^2 | 6 | 18 | 4* |
9 | 23 | 2x11 | 1 | 21 | 2* |
10 | 29 | 2^2x7 | 1 | 27 | 2 |
Statistické vyhodnocení (n = 10)
editovatTabulka pro první stovku prvočísel
editovatPoř. č. |
p10 | f k | k∙l -1 | p11 | χ |
---|---|---|---|---|---|
1 | 2 | 1 | 1 | 2 | 3** |
2 | 3 | 2 | 1 | 3 | 2* |
3 | 5 | 2^2 | 4 | 5 | 2 |
4 | 7 | 2x3 | 2 | 7 | 2* |
5 | 11 | 2x5 | 0 | 10 | 3* |
6 | 13 | 2^2x3 | 1 | 12 | 2 |
7 | 17 | 2^4 | 1 | 16 | 3 |
8 | 19 | 2x3^2 | 6 | 18 | 4* |
9 | 23 | 2x11 | 1 | 21 | 2* |
10 | 29 | 2^2x7 | 1 | 27 | 2 |
11 | 31 | 2x3x5 | 1 | 29 | 7* |
12 | 37 | 2^2x3^2 | 6 | 34 | 2 |
13 | 41 | 2^3x5 | 1 | 38 | 6 |
14 | 43 | 2x3x7 | 6 | 3A | 9* |
15 | 47 | 2x23 | 1 | 43 | 2* |
16 | 53 | 2^2x13 | 2 | 49 | 2 |
17 | 59 | 2x29 | 1 | 54 | 3* |
18 | 61 | 2^2x3x5 | 15 | 56 | 2 |
19 | 67 | 2x3x11 | 1 | 61 | 4* |
20 | 71 | 2x5x7 | 1 | 65 | 2* |
21 | 73 | 2^3x3^2 | 1 | 67 | 5 |
22 | 79 | 2x3x13 | 2 | 72 | 2* |
23 | 83 | 2x41 | 2 | 76 | 3* |
24 | 89 | 2^3x11 | 4 | 81 | 3 |
25 | 97 | 2^5x3 | 2 | 89 | 5 |
26 | 101 | 2^2x5^2 | 1 | 92 | 2 |
27 | 103 | 2x3x17 | 1 | 94 | 2* |
28 | 107 | 2x53 | 2 | 98 | 3* |
29 | 109 | 2^2x3^3 | 1 | 9A | 6 |
30 | 113 | 2^4x7 | 2 | A3 | 3 |
31 | 127 | 2x3^2x7 | 2 | 106 | 9* |
32 | 131 | 2x5x13 | 2 | 10A | 3* |
33 | 137 | 2^3x17 | 2 | 115 | 3 |
34 | 139 | 2x3x23 | 2 | 117 | 4* |
35 | 149 | 2^2x37 | 1 | 126 | 2 |
36 | 151 | 2x3x5^2 | 2 | 128 | 5 |
37 | 157 | 2^2x3x13 | 4 | 133 | 5 |
38 | 163 | 2x3^4 | 1 | 139 | 4* |
39 | 167 | 2x83 | 2 | 142 | 2* |
40 | 173 | 2^2x43 | 1 | 148 | 2 |
41 | 179 | 2x89 | 1 | 153 | 3* |
42 | 181 | 2^2x3^2x5 | 2 | 155 | 2 |
43 | 191 | 2x5x19 | 5 | 164 | 2* |
44 | 193 | 2^6x3 | 3 | 166 | 5 |
45 | 197 | 2^2x7^2 | 1 | 16A | 2 |
46 | 199 | 2x3^2x11 | 9 | 171 | 2* |
47 | 211 | 2x3x5x7 | 6 | 182 | 4* |
48 | 223 | 2x3x37 | 1 | 193 | 9* |
49 | 227 | 2x113 | 2 | 197 | 3* |
50 | 229 | 2^2x3x19 | 6 | 199 | 6 |
51 | 233 | 2^3x29 | 1 | 1A2 | 3 |
52 | 239 | 2x7x17 | 2 | 1A8 | 2* |
53 | 241 | 2^4x3x5 | 5 | 1AA | 7 |
54 | 251 | 2x5^3 | 2 | 209 | 3* |
55 | 257 | 2^8 | 4 | 214 | 3 |
56 | 263 | 2x131 | 2 | 21A | 2* |
57 | 269 | 2^2x67 | 2 | 225 | 2 |
58 | 271 | 2x3^3x5 | 2 | 227 | 2* |
59 | 277 | 2^2x3x23 | 1 | 232 | 5 |
60 | 281 | 2^3x5x7 | 1 | 236 | 3 |
61 | 283 | 2x3x47 | 2 | 238 | 6* |
62 | 293 | 2^2x73 | 1 | 247 | 2 |
63 | 307 | 2x3^2x17 | 2 | 25A | 7* |
64 | 311 | 2x5x31 | 5 | 263 | 2* |
65 | 313 | 2^3x3x13 | 4 | 265 | 10 |
66 | 317 | 2^2x79 | 4 | 269 | 2 |
67 | 331 | 2x3x5x11 | 1 | 281 | 5* |
68 | 337 | 2^4x3x7 | 3 | 287 | 10 |
69 | 347 | 2x173 | 2 | 296 | 3* |
70 | 349 | 2^2x3x29 | 3 | 298 | 2 |
71 | 353 | 2^5x11 | 4 | 2A1 | 3 |
72 | 359 | 2x179 | 2 | 2A7 | 2* |
73 | 367 | 2x3x61 | 1 | 304 | 2* |
74 | 373 | 2^2x3x31 | 1 | 30A | 2 |
75 | 379 | 2x3^3x7 | 7 | 315 | 4* |
76 | 383 | 2x191 | 1 | 319 | 2* |
77 | 389 | 2^2x97 | 4 | 324 | 2 |
78 | 397 | 2^2x3^2x11 | 4 | 331 | 5 |
79 | 401 | 2^4x5^2 | 2 | 335 | 3 |
80 | 409 | 2^3x3x17 | 3 | 342 | 21 |
81 | 419 | 2x11x19 | 1 | 351 | 3* |
82 | 421 | 2^2x3x5x7 | 4 | 353 | 2 |
83 | 431 | 2x5x43 | 2 | 362 | 5* |
84 | 433 | 2^4x3^3 | 2 | 364 | 5 |
85 | 439 | 2x3x73 | 2 | 36A | 5* |
86 | 443 | 2x13x17 | 1 | 373 | 3* |
87 | 449 | 2^6x7 | 8 | 379 | 3 |
88 | 457 | 2^3x3x19 | 3 | 386 | 13 |
89 | 461 | 2^2x5x23 | 1 | 38A | 2 |
90 | 463 | 2x3x7x11 | 1 | 391 | 2* |
91 | 467 | 2x233 | 1 | 395 | 3* |
92 | 479 | 2x239 | 2 | 3A6 | 2* |
93 | 487 | 2x3^5 | 1 | 403 | 2* |
94 | 491 | 2x5x7^2 | 2 | 407 | 4* |
95 | 499 | 2x3x83 | 1 | 414 | 5* |
96 | 503 | 2x251 | 2 | 418 | 2* |
97 | 509 | 2^2x127 | 2 | 423 | 2 |
98 | 521 | 2^3x5x13 | 2 | 434 | 3 |
99 | 523 | 2x3^2x29 | 18 | 436 | 4* |
100 | 541 | 2^2x3^3x5 | 5 | 452 | 2 |
Statistické vyhodnocení (n = 100)
editovat- Délka periody = 0 (neperiodický zlomek pouze s jednocifernou předperiodou) - 1 %
- Délka periody maximální: - 38 %
- Délka periody poloviční (k/l = 2) - 32 %
- Délka periody třetinová (k/l = 3) - 5 %
- Délka periody čtvrtinová (k/l = 4) - 10 %
- Délka periody pětinová (k/l = 5) - 4 %
- Délka periody šestinová (k/l = 6) - 5 %
- Délka periody sedminová (k/l = 7) - 1 %
- Délka periody osminová (k/l = 8) - 1 %
- Délka periody devítinová (k/l = 9) - 1 %
- Délka periody patnáctinová (k/l = 15) - 1 %
- Délka periody osmnáctinová (k/l = 18) - 1 %
Tabulka pro první tisícovku prvočísel
editovatPoř. č. |
p10 | f k | k∙l -1 | p11 | χ |
---|---|---|---|---|---|
1 | 2 | 1 | 1 | 2 | 3** |
2 | 3 | 2 | 1 | 3 | 2* |
3 | 5 | 2^2 | 4 | 5 | 2 |
4 | 7 | 2x3 | 2 | 7 | 2* |
5 | 11 | 2x5 | 0 | 10 | 3* |
6 | 13 | 2^2x3 | 1 | 12 | 2 |
7 | 17 | 2^4 | 1 | 16 | 3 |
8 | 19 | 2x3^2 | 6 | 18 | 4* |
9 | 23 | 2x11 | 1 | 21 | 2* |
10 | 29 | 2^2x7 | 1 | 27 | 2 |
11 | 31 | 2x3x5 | 1 | 29 | 7* |
12 | 37 | 2^2x3^2 | 6 | 34 | 2 |
13 | 41 | 2^3x5 | 1 | 38 | 6 |
14 | 43 | 2x3x7 | 6 | 3A | 9* |
15 | 47 | 2x23 | 1 | 43 | 2* |
16 | 53 | 2^2x13 | 2 | 49 | 2 |
17 | 59 | 2x29 | 1 | 54 | 3* |
18 | 61 | 2^2x3x5 | 15 | 56 | 2 |
19 | 67 | 2x3x11 | 1 | 61 | 4* |
20 | 71 | 2x5x7 | 1 | 65 | 2* |
21 | 73 | 2^3x3^2 | 1 | 67 | 5 |
22 | 79 | 2x3x13 | 2 | 72 | 2* |
23 | 83 | 2x41 | 2 | 76 | 3* |
24 | 89 | 2^3x11 | 4 | 81 | 3 |
25 | 97 | 2^5x3 | 2 | 89 | 5 |
26 | 101 | 2^2x5^2 | 1 | 92 | 2 |
27 | 103 | 2x3x17 | 1 | 94 | 2* |
28 | 107 | 2x53 | 2 | 98 | 3* |
29 | 109 | 2^2x3^3 | 1 | 9A | 6 |
30 | 113 | 2^4x7 | 2 | A3 | 3 |
31 | 127 | 2x3^2x7 | 2 | 106 | 9* |
32 | 131 | 2x5x13 | 2 | 10A | 3* |
33 | 137 | 2^3x17 | 2 | 115 | 3 |
34 | 139 | 2x3x23 | 2 | 117 | 4* |
35 | 149 | 2^2x37 | 1 | 126 | 2 |
36 | 151 | 2x3x5^2 | 2 | 128 | 5 |
37 | 157 | 2^2x3x13 | 4 | 133 | 5 |
38 | 163 | 2x3^4 | 1 | 139 | 4* |
39 | 167 | 2x83 | 2 | 142 | 2* |
40 | 173 | 2^2x43 | 1 | 148 | 2 |
41 | 179 | 2x89 | 1 | 153 | 3* |
42 | 181 | 2^2x3^2x5 | 2 | 155 | 2 |
43 | 191 | 2x5x19 | 5 | 164 | 2* |
44 | 193 | 2^6x3 | 3 | 166 | 5 |
45 | 197 | 2^2x7^2 | 1 | 16A | 2 |
46 | 199 | 2x3^2x11 | 9 | 171 | 2* |
47 | 211 | 2x3x5x7 | 6 | 182 | 4* |
48 | 223 | 2x3x37 | 1 | 193 | 9* |
49 | 227 | 2x113 | 2 | 197 | 3* |
50 | 229 | 2^2x3x19 | 6 | 199 | 6 |
51 | 233 | 2^3x29 | 1 | 1A2 | 3 |
52 | 239 | 2x7x17 | 2 | 1A8 | 2* |
53 | 241 | 2^4x3x5 | 5 | 1AA | 7 |
54 | 251 | 2x5^3 | 2 | 209 | 3* |
55 | 257 | 2^8 | 4 | 214 | 3 |
56 | 263 | 2x131 | 2 | 21A | 2* |
57 | 269 | 2^2x67 | 2 | 225 | 2 |
58 | 271 | 2x3^3x5 | 2 | 227 | 2* |
59 | 277 | 2^2x3x23 | 1 | 232 | 5 |
60 | 281 | 2^3x5x7 | 1 | 236 | 3 |
61 | 283 | 2x3x47 | 2 | 238 | 6* |
62 | 293 | 2^2x73 | 1 | 247 | 2 |
63 | 307 | 2x3^2x17 | 2 | 25A | 7* |
64 | 311 | 2x5x31 | 5 | 263 | 2* |
65 | 313 | 2^3x3x13 | 4 | 265 | 10 |
66 | 317 | 2^2x79 | 4 | 269 | 2 |
67 | 331 | 2x3x5x11 | 1 | 281 | 5* |
68 | 337 | 2^4x3x7 | 3 | 287 | 10 |
69 | 347 | 2x173 | 2 | 296 | 3* |
70 | 349 | 2^2x3x29 | 3 | 298 | 2 |
71 | 353 | 2^5x11 | 4 | 2A1 | 3 |
72 | 359 | 2x179 | 2 | 2A7 | 2* |
73 | 367 | 2x3x61 | 1 | 304 | 2* |
74 | 373 | 2^2x3x31 | 1 | 30A | 2 |
75 | 379 | 2x3^3x7 | 7 | 315 | 4* |
76 | 383 | 2x191 | 1 | 319 | 2* |
77 | 389 | 2^2x97 | 4 | 324 | 2 |
78 | 397 | 2^2x3^2x11 | 4 | 331 | 5 |
79 | 401 | 2^4x5^2 | 2 | 335 | 3 |
80 | 409 | 2^3x3x17 | 3 | 342 | 21 |
81 | 419 | 2x11x19 | 1 | 351 | 3* |
82 | 421 | 2^2x3x5x7 | 4 | 353 | 2 |
83 | 431 | 2x5x43 | 2 | 362 | 5* |
84 | 433 | 2^4x3^3 | 2 | 364 | 5 |
85 | 439 | 2x3x73 | 2 | 36A | 5* |
86 | 443 | 2x13x17 | 1 | 373 | 3* |
87 | 449 | 2^6x7 | 8 | 379 | 3 |
88 | 457 | 2^3x3x19 | 3 | 386 | 13 |
89 | 461 | 2^2x5x23 | 1 | 38A | 2 |
90 | 463 | 2x3x7x11 | 1 | 391 | 2* |
91 | 467 | 2x233 | 1 | 395 | 3* |
92 | 479 | 2x239 | 2 | 3A6 | 2* |
93 | 487 | 2x3^5 | 1 | 403 | 2* |
94 | 491 | 2x5x7^2 | 2 | 407 | 4* |
95 | 499 | 2x3x83 | 1 | 414 | 5* |
96 | 503 | 2x251 | 2 | 418 | 2* |
97 | 509 | 2^2x127 | 2 | 423 | 2 |
98 | 521 | 2^3x5x13 | 2 | 434 | 3 |
99 | 523 | 2x3^2x29 | 18 | 436 | 4* |
100 | 541 | 2^2x3^3x5 | 5 | 452 | 2 |
101 | 547 | 2x3x7x13 | 14 | 458 | 4* |
102 | 557 | 2^2x139 | 1 | 467 | 2 |
103 | 563 | 2x281 | 2 | 472 | 3* |
104 | 569 | 2^3x71 | 1 | 478 | 3 |
105 | 571 | 2x3x5x19 | 2 | 47A | 5* |
106 | 577 | 2^6x3^2 | 6 | 485 | 5 |
107 | 587 | 2x293 | 1 | 494 | 3* |
108 | 593 | 2^4x37 | 1 | 49A | 3 |
109 | 599 | 2x13x23 | 1 | 4A5 | 2* |
110 | 601 | 2^3x3x5^2 | 1 | 4A7 | 7 |
111 | 607 | 2x3x101 | 2 | 502 | 2* |
112 | 613 | 2^2x3^2x17 | 1 | 508 | 2 |
113 | 617 | 2^3x7x11 | 2 | 511 | 3 |
114 | 619 | 2x3x103 | 1 | 513 | 4* |
115 | 631 | 2x3^2x5x7 | 7 | 524 | 9* |
116 | 641 | 2^7x5 | 4 | 533 | 3 |
117 | 643 | 2x3x107 | 1 | 535 | 7* |
118 | 647 | 2x17x19 | 1 | 539 | 2* |
119 | 653 | 2^2x163 | 2 | 544 | 2 |
120 | 659 | 2x7x47 | 2 | 54A | 3* |
121 | 661 | 2^2x3x5x11 | 20 | 551 | 2 |
122 | 673 | 2^5x3x7 | 1 | 562 | 5 |
123 | 677 | 2^2x13^2 | 1 | 566 | 2 |
124 | 683 | 2x11x31 | 1 | 571 | 10* |
125 | 691 | 2x3x5x23 | 5 | 579 | 6* |
126 | 701 | 2^2x5^2x7 | 1 | 588 | 2 |
127 | 709 | 2^2x3x59 | 2 | 595 | 2 |
128 | 719 | 2x359 | 1 | 5A4 | 2* |
129 | 727 | 2x3x11^2 | 3 | 601 | 7* |
130 | 733 | 2^2x3x61 | 3 | 607 | 6 |
131 | 739 | 2x3^2x41 | 2 | 612 | 6* |
132 | 743 | 2x7x53 | 2 | 616 | 2* |
133 | 751 | 2x3x5^3 | 5 | 623 | 2* |
134 | 757 | 2^2x3^3x7 | 4 | 629 | 2 |
135 | 761 | 2^3x5x19 | 1 | 632 | 6 |
136 | 769 | 2^8x3 | 1 | 63A | 11 |
137 | 773 | 2^2x193 | 2 | 643 | 2 |
138 | 787 | 2x3x131 | 2 | 656 | 4* |
139 | 797 | 2^2x199 | 4 | 665 | 2 |
140 | 809 | 2^3x101 | 1 | 676 | 3 |
141 | 811 | 2x3^4x5 | 2 | 678 | 5* |
142 | 821 | 2^2x5x41 | 1 | 687 | 2 |
143 | 823 | 2x3x137 | 3 | 689 | 2* |
144 | 827 | 2x7x59 | 2 | 692 | 3* |
145 | 829 | 2^2x3^2x23 | 36 | 694 | 2 |
146 | 839 | 2x419 | 1 | 6A3 | 2* |
147 | 853 | 2^2x3x71 | 1 | 706 | 2 |
148 | 857 | 2^3x107 | 1 | 70A | 3 |
149 | 859 | 2x3x11x13 | 3 | 711 | 4* |
150 | 863 | 2x431 | 1 | 715 | 2* |
151 | 877 | 2^2x3x73 | 3 | 728 | 2 |
152 | 881 | 2^4x5x11 | 2 | 731 | 3 |
153 | 883 | 2x3^2x7^2 | 1 | 733 | 4* |
154 | 887 | 2x443 | 2 | 737 | 2* |
155 | 907 | 2x3x151 | 3 | 755 | 4* |
156 | 911 | 2x5x7x13 | 36 | 759 | 3* |
157 | 919 | 2x3^3x17 | 2 | 766 | 5* |
158 | 929 | 2^5x29 | 2 | 775 | 3 |
159 | 937 | 2^3x3^2x13 | 1 | 782 | 5 |
160 | 941 | 2^2x5x47 | 1 | 786 | 2 |
161 | 947 | 2x11x43 | 1 | 791 | 3* |
162 | 953 | 2^3x7x17 | 1 | 797 | 3 |
163 | 967 | 2x3x7x23 | 6 | 7AA | 2* |
164 | 971 | 2x5x97 | 1 | 803 | 3* |
165 | 977 | 2^4x61 | 2 | 809 | 3 |
166 | 983 | 2x491 | 1 | 814 | 2* |
167 | 991 | 2x3^2x5x11 | 1 | 821 | 2* |
168 | 997 | 2^2x3x83 | 1 | 827 | 7 |
169 | 1009 | 2^4x3^2x7 | 1 | 838 | 11 |
170 | 1013 | 2^2x11x23 | 22 | 841 | 3 |
171 | 1019 | 2x509 | 2 | 847 | 3* |
172 | 1021 | 2^2x3x5x17 | 4 | 849 | 10 |
173 | 1031 | 2x5x103 | 2 | 858 | 2* |
174 | 1033 | 2^3x3x43 | 1 | 85A | 5 |
175 | 1039 | 2x3x173 | 1 | 865 | 2* |
176 | 1049 | 2^3x131 | 2 | 874 | 3 |
177 | 1051 | 2x3x5^2x7 | 2 | 876 | 5* |
178 | 1061 | 2^2x5x53 | 2 | 885 | 2 |
179 | 1063 | 2x3^2x59 | 2 | 887 | 2* |
180 | 1069 | 2^2x3x89 | 1 | 892 | 6 |
181 | 1087 | 2x3x181 | 3 | 8A9 | 2* |
182 | 1091 | 2x5x109 | 2 | 902 | 4* |
183 | 1093 | 2^2x3x7x13 | 84 | 904 | 5 |
184 | 1097 | 2^3x137 | 1 | 908 | 3 |
185 | 1103 | 2x19x29 | 1 | 913 | 3* |
186 | 1109 | 2^2x277 | 2 | 919 | 2 |
187 | 1117 | 2^2x3^2x31 | 93 | 926 | 2 |
188 | 1123 | 2x3x11x17 | 3 | 931 | 4* |
189 | 1129 | 2^3x3x47 | 1 | 937 | 11 |
190 | 1151 | 2x5^2x23 | 2 | 957 | 2* |
191 | 1153 | 2^7x3^2 | 2 | 959 | 5 |
192 | 1163 | 2x7x83 | 2 | 968 | 3* |
193 | 1171 | 2x3^x5x13 | 3 | 975 | 4* |
194 | 1181 | 2^2x5x59 | 20 | 984 | 7 |
195 | 1187 | 2x593 | 2 | 98A | 3* |
196 | 1193 | 2^3x149 | 4 | 995 | 3 |
197 | 1201 | 2^4x3x5^2 | 1 | 9A2 | 11 |
198 | 1213 | 2^2x3x101 | 2 | A03 | 2 |
199 | 1217 | 2^6x19 | 1 | A07 | 3 |
200 | 1223 | 2x13x47 | 2 | A12 | 2* |
201 | 1229 | 2^2x307 | 1 | A18 | 2 |
202 | 1231 | 2x3x5x41 | 30 | A1A | 2* |
203 | 1237 | 2^2x3x103 | 6 | A25 | 2 |
204 | 1249 | 2^5x3x13 | 1 | A36 | 11 |
205 | 1259 | 2x17x37 | 1 | A45 | 3* |
206 | 1277 | 2^2x11x29 | 4 | A61 | 2 |
207 | 1279 | 2x3^2x71 | 3 | A63 | 2* |
208 | 1283 | 2x641 | 2 | A67 | 3* |
209 | 1289 | 2^3x7x23 | 1 | A72 | 6 |
210 | 1291 | 2x3x5x43 | 5 | A74 | 4* |
211 | 1297 | 2^4x3^4 | 3 | A7A | 10 |
212 | 1301 | 2^2x5^2x13 | 10 | A83 | 2 |
213 | 1303 | 2x3x7x31 | 21 | A85 | 2* |
214 | 1307 | 2x653 | 1 | A89 | 3* |
215 | 1319 | 2x659 | 2 | A9A | 3* |
216 | 1321 | 2^3x3x5x11 | 8 | AA1 | 13 |
217 | 1327 | 2x3x13x17 | 2 | AA7 | 9* |
218 | 1361 | 2^4x5x17 | 1 | 1028 | 3 |
219 | 1367 | 2x683 | 1 | 1033 | 2* |
220 | 1373 | 2^2x7^3 | 2 | 1039 | 2 |
221 | 1381 | 2^2x3x5x23 | 1 | 1046 | 2 |
222 | 1399 | 2x3x233 | 6 | 1062 | 5* |
223 | 1409 | 2^7x11 | 2 | 1071 | 3 |
224 | 1423 | 2x3^2x79 | 1 | 1084 | 9* |
225 | 1427 | 2x23x31 | 2 | 1088 | 3* |
226 | 1429 | 2^2x3x7x17 | 1 | 108A | 6 |
227 | 1433 | 2^3x179 | 2 | 1093 | 3 |
228 | 1439 | 2x719 | 1 | 1099 | 2* |
229 | 1447 | 2x3x241 | 2 | 10A6 | 2* |
230 | 1451 | 2x5^2x29 | 2 | 10AA | 3* |
231 | 1453 | 2^2x3x11^2 | 44 | 1101 | 2 |
232 | 1459 | 2x3^6 | 2 | 1107 | 6* |
233 | 1471 | 2x3x5x7^2 | 2 | 1118 | 5* |
234 | 1481 | 2^3x5x37 | 5 | 1127 | 3 |
235 | 1483 | 2x3x13x19 | 1 | 1129 | 4* |
236 | 1487 | 2x743 | 2 | 1132 | 2* |
237 | 1489 | 2^4x3x31 | 6 | 1134 | 14 |
238 | 1493 | 2^2x373 | 1 | 1138 | 2 |
239 | 1499 | 2x7x107 | 1 | 1143 | 2* |
240 | 1511 | 2x5x151 | 1 | 1154 | 2* |
241 | 1523 | 2x761 | 1 | 1165 | 3* |
242 | 1531 | 2x3^2x5x17 | 10 | 1172 | 4* |
243 | 1543 | 2x3x257 | 3 | 1183 | 2* |
244 | 1549 | 2^2x3^2x43 | 12 | 1189 | 2 |
245 | 1553 | 2^4x97 | 1 | 1192 | 3 |
246 | 1559 | 2x19x41 | 2 | 1198 | 2* |
247 | 1567 | 2x3^3x29 | 1 | 11A5 | 2* |
248 | 1571 | 2x5x157 | 1 | 11A9 | 3* |
249 | 1579 | 2x3x263 | 6 | 1206 | 5* |
250 | 1583 | 2x7x113 | 2 | 120A | 2* |
251 | 1597 | 2^2x3x7x19 | 1 | 1222 | 11 |
252 | 1601 | 2^6x5^2 | 1 | 1226 | 3 |
253 | 1607 | 2x11x73 | 1 | 1231 | 2* |
254 | 1609 | 2^3x3x67 | 8 | 1233 | 7 |
255 | 1613 | 2^2x13x31 | 1 | 1237 | 3 |
256 | 1619 | 2x809 | 2 | 1242 | 3* |
257 | 1621 | 2^2x3^4x5 | 4 | 1244 | 2 |
258 | 1627 | 2x3x271 | 6 | 124A | 6* |
259 | 1637 | 2^2x409 | 4 | 1259 | 2 |
260 | 1657 | 2^3x3^2x23 | 1 | 1277 | 11 |
261 | 1663 | 2x3x277 | 2 | 1282 | 2* |
262 | 1667 | 2x7^2x17 | 2 | 1286 | 3* |
263 | 1669 | 2^2x3x139 | 1 | 1288 | 2 |
264 | 1693 | 2^2x3^2x47 | 9 | 12AA | 2 |
265 | 1697 | 2^5x53 | 16 | 1303 | 3 |
266 | 1699 | 2x3x283 | 1 | 1305 | 6* |
267 | 1709 | 2^2x7x61 | 2 | 1314 | 3 |
268 | 1721 | 2^3x5x43 | 2 | 1325 | 3 |
269 | 1723 | 2x3x7x41 | 82 | 1327 | 6* |
270 | 1733 | 2^2x433 | 1 | 1336 | 2 |
271 | 1741 | 2^2x3x5x29 | 4 | 1343 | 2 |
272 | 1747 | 2x3^2x97 | 3 | 1349 | 4* |
273 | 1753 | 2^3x3x73 | 2 | 1354 | 7 |
274 | 1759 | 2x3x293 | 2 | 135A | 2* |
275 | 1777 | 2^4x3x37 | 37 | 1376 | 5 |
276 | 1783 | 2x3^4x11 | 1 | 1381 | 2* |
277 | 1787 | 2x19x47 | 1 | 1385 | 3* |
278 | 1789 | 2^2x3x149 | 3 | 1387 | 6 |
279 | 1801 | 2^3x3^2x5^2 | 1 | 1398 | 11 |
280 | 1811 | 2x5x181 | 2 | 13A7 | 3* |
281 | 1823 | 2x911 | 2 | 1408 | 2* |
282 | 1831 | 2x3x5x61 | 1 | 1415 | 9* |
283 | 1847 | 2x13x71 | 26 | 142A | 2* |
284 | 1861 | 2^2x3x5x31 | 1 | 1442 | 2 |
285 | 1867 | 2x3x311 | 2 | 1448 | 4* |
286 | 1871 | 2x5x11x17 | 5 | 1451 | 2* |
287 | 1873 | 2^4x3^2x13 | 6 | 1453 | 10 |
288 | 1877 | 2^2x7x67 | 1 | 1457 | 2 |
289 | 1879 | 2x3x313 | 1 | 1459 | 2* |
290 | 1889 | 2^5x59 | 1 | 1468 | 3 |
291 | 1901 | 2^2x5^2x19 | 4 | 1479 | 2 |
292 | 1907 | 2x953 | 1 | 1484 | 3* |
293 | 1913 | 2^3x239 | 1 | 148A | 3 |
294 | 1931 | 2x5x193 | 10 | 14A6 | 3* |
295 | 1933 | 2^2x3x7x23 | 69 | 14A8 | 5 |
296 | 1949 | 2^2x487 | 1 | 1512 | 2 |
297 | 1951 | 2x3x5^2x13 | 1 | 1514 | 2* |
298 | 1973 | 2^2x17x29 | 2 | 1534 | 2 |
299 | 1979 | 2x23x43 | 2 | 153A | 3* |
300 | 1987 | 2x3x331 | 2 | 1547 | 4* |
301 | 1993 | 2^3x3x83 | 3 | 1552 | 5 |
302 | 1997 | 2^2x499 | 1 | 1556 | 2 |
303 | 1999 | 2x3^3x37 | 2 | 1558 | 5* |
304 | 2003 | 2x7x11x13 | 7 | 1561 | 3* |
305 | 2011 | 2x3x5x67 | 1 | 1569 | 5* |
306 | 2017 | 2^5x3^2x7 | 8 | 1574 | 5 |
307 | 2027 | 2x1013 | 1 | 1583 | 3* |
308 | 2029 | 2^2x3x13^2 | 12 | 1585 | 2 |
309 | 2039 | 2x1019 | 1 | 1594 | 2* |
310 | 2053 | 2^2x3^3x19 | 3 | 15A7 | 2 |
311 | 2063 | 2x1031 | 2 | 1606 | 2* |
312 | 2069 | 2^3x11x47 | 44 | 1611 | 4* |
313 | 2081 | 2^5x5x13 | 13 | 1622 | 3 |
314 | 2083 | 2x3x347 | 1 | 1624 | 4* |
315 | 2087 | 2x7x149 | 2 | 1628 | 2* |
316 | 2089 | 2^3x3^2x29 | 1 | 162A | 7 |
317 | 2099 | 2x1049 | 1 | 1639 | 3* |
318 | 2111 | 2x5x211 | 2 | 164A | 2* |
319 | 2113 | 2^6x3x11 | 2 | 1651 | 5 |
320 | 2129 | 2^4x7x19 | 1 | 1666 | 3 |
321 | 2131 | 2x3x5x71 | 2 | 1668 | 4* |
322 | 2137 | 2^3x3x89 | 2 | 1673 | 10 |
323 | 2141 | 2^2x5x107 | 1 | 1677 | 2 |
324 | 2143 | 2x3^2x7x17 | 7 | 1679 | 9* |
325 | 2153 | 2^3x269 | 1 | 1688 | 3 |
326 | 2161 | 2^4x3^3x5 | 4 | 1695 | 23 |
327 | 2179 | 2x3^2x11^2 | 3 | 1701 | 5* |
328 | 2203 | 2x3x367 | 1 | 1723 | 2* |
329 | 2207 | 2x1103 | 2 | 1727 | 2* |
330 | 2213 | 2^2x7x79 | 1 | 1732 | 2 |
331 | 2221 | 2^2x3x5x37 | 1 | 173A | 2 |
332 | 2237 | 2^2x557 | 4 | 1754 | 2 |
333 | 2239 | 2x3x373 | 2 | 1756 | 2* |
334 | 2243 | 2x19x59 | 2 | 175A | 3* |
335 | 2251 | 2x3^2x5^3 | 6 | 1767 | 5* |
336 | 2267 | 2x11x103 | 1 | 1781 | 3* |
337 | 2269 | 2^2x3^4x7 | 4 | 1783 | 2 |
338 | 2273 | 2^5x71 | 1 | 1787 | 3 |
339 | 2281 | 2^3x3x5x19 | 4 | 1794 | 7 |
340 | 2287 | 2x3^2x127 | 2 | 179A | 7* |
341 | 2293 | 2^2x3x191 | 4 | 17A5 | 2 |
342 | 2297 | 2^3x7x41 | 8 | 17A9 | 5 |
343 | 2309 | 2^2x577 | 1 | 180A | 2 |
344 | 2311 | 2x3x5x7x11 | 1 | 1811 | 2* |
345 | 2333 | 2^2x11x53 | 2 | 1831 | 2 |
346 | 2339 | 2x7x167 | 14 | 1837 | 3* |
347 | 2341 | 2^2x3^2x5x13 | 2 | 1839 | 7 |
348 | 2347 | 2x3x17x23 | 1 | 1844 | 6* |
349 | 2351 | 2x5^2x47 | 10 | 1848 | 3* |
350 | 2357 | 2^2x19x31 | 2 | 1853 | 2 |
351 | 2371 | 2x3x5x79 | 2 | 1866 | 4* |
352 | 2377 | 2^3x3^3x11 | 24 | 1871 | 5 |
353 | 2381 | 2^2x5x7x17 | 2 | 1875 | 3 |
354 | 2383 | 2x3x397 | 6 | 1877 | 13* |
355 | 2389 | 2^2x3x199 | 1 | 1882 | 2 |
356 | 2393 | 2^3x13x23 | 1 | 1886 | 3 |
357 | 2399 | 2x11x109 | 1 | 1891 | 2* |
358 | 2411 | 2x5x241 | 2 | 18A2 | 3* |
359 | 2417 | 2^4x151 | 1 | 18A8 | 3 |
360 | 2423 | 2x7x173 | 1 | 1903 | 2* |
361 | 2437 | 2^2x3x7x29 | 3 | 1916 | 2 |
362 | 2441 | 2^3x5x61 | 1 | 191A | 6 |
363 | 2447 | 2x1223 | 1 | 1925 | 2* |
364 | 2459 | 2x1229 | 2 | 1936 | 3* |
365 | 2467 | 2x3^2x137 | 9 | 1943 | 4* |
366 | 2473 | 2^3x3x103 | 2 | 1949 | 5 |
367 | 2477 | 2^2x619 | 1 | 1952 | 2 |
368 | 2503 | 2x3^2x139 | 2 | 1976 | 2* |
369 | 2521 | 2^3x3^2x5x7 | 45 | 1992 | 17 |
370 | 2531 | 2x5x11x23 | 11 | 19A1 | 3* |
371 | 2539 | 2x3^3x47 | 9 | 19A9 | 4* |
372 | 2543 | 2x31x41 | 2 | 1A02 | 2* |
373 | 2549 | 2^2x7^2x13 | 7 | 1A08 | 2 |
374 | 2551 | 2x3x5^2x17 | 2 | 1A0A | 2* |
375 | 2557 | 2^2x3^2x71 | 4 | 1A15 | 2 |
376 | 2579 | 2x1289 | 1 | 1A35 | 3* |
377 | 2591 | 2x5x7x37 | 70 | 1A46 | 2* |
378 | 2593 | 2^5x3^4 | 1 | 1A48 | 7 |
379 | 2609 | 2^4x163 | 1 | 1A62 | 3 |
380 | 2617 | 2^3x3x109 | 3 | 1A6A | 5 |
381 | 2621 | 2^2x5x131 | 4 | 1A73 | 2 |
382 | 2633 | 2^3x7x47 | 4 | 1A84 | 3 |
383 | 2647 | 2x3^3x7^2 | 2 | 1A97 | 2* |
384 | 2657 | 2^5x83 | 1 | 1AA6 | 3 |
385 | 2659 | 2x3x443 | 6 | 1AA8 | 4* |
386 | 2663 | 2x11^3 | 1 | 2001 | 2* |
387 | 2671 | 2x3x5x89 | 3 | 2009 | 5* |
388 | 2677 | 2^2x3x223 | 4 | 2014 | 2 |
389 | 2683 | 2x3^2x149 | 2 | 201A | 4* |
390 | 2687 | 2x17x79 | 1 | 2023 | 3* |
391 | 2689 | 2^7x3x7 | 14 | 2025 | 19 |
392 | 2693 | 2^2x673 | 2 | 2029 | 2 |
393 | 2699 | 2x19x71 | 1 | 2034 | 3* |
394 | 2707 | 2x3x11x41 | 3 | 2041 | 4* |
395 | 2711 | 2x5x271 | 1 | 2045 | 2* |
396 | 2713 | 2^3x3x113 | 1 | 2047 | 5 |
397 | 2719 | 2x3^2x151 | 6 | 2052 | 2* |
398 | 2729 | 2^3x11x31 | 8 | 2061 | 3 |
399 | 2731 | 2x3x5x7x13 | 1 | 2063 | 5* |
400 | 2741 | 2^2x5x137 | 5 | 2072 | 2 |
401 | 2749 | 2^2x3x229 | 3 | 207A | 6 |
402 | 2753 | 2^6x43 | 2 | 2083 | 3 |
403 | 2767 | 2x3x461 | 6 | 2096 | 9* |
404 | 2777 | 2^3x347 | 8 | 20A5 | 3 |
405 | 2789 | 2^2x17x41 | 17 | 2106 | 2 |
406 | 2791 | 2x3^2x5x31 | 30 | 2108 | 7* |
407 | 2797 | 2^2x3x233 | 12 | 2113 | 2 |
408 | 2801 | 2^4x5^2x7 | 1 | 2117 | 3 |
409 | 2803 | 2x3x467 | 1 | 2119 | 4* |
410 | 2819 | 2x1409 | 1 | 2133 | 3* |
411 | 2833 | 2^4x3x59 | 3 | 2146 | 5 |
412 | 2837 | 2^2x709 | 1 | 214A | 2 |
413 | 2843 | 2x7^2x29 | 1 | 2155 | 4* |
414 | 2851 | 2x3x5^2x19 | 2 | 2162 | 4* |
415 | 2857 | 2^3x3x7x17 | 1 | 2168 | 11 |
416 | 2861 | 2^2x5x11x13 | 4 | 2171 | 2 |
417 | 2879 | 2x1439 | 2 | 2188 | 2* |
418 | 2887 | 2x3x13x37 | 3 | 2195 | 2* |
419 | 2897 | 2^4x181 | 4 | 21A4 | 3 |
420 | 2903 | 2x1451 | 2 | 21AA | 2* |
421 | 2909 | 2^2x727 | 2 | 2205 | 2 |
422 | 2917 | 2^2x3^6 | 1 | 2212 | 5 |
423 | 2927 | 2x7x11x19 | 1 | 2221 | 2* |
424 | 2939 | 2x13x113 | 2 | 2232 | 3* |
425 | 2953 | 2^3x3^2x41 | 4 | 2245 | 13 |
426 | 2957 | 2^2x739 | 2 | 2249 | 2 |
427 | 2963 | 2x1481 | 1 | 2254 | 3* |
428 | 2969 | 2^3x7x53 | 1 | 225A | 3 |
429 | 2971 | 2x3^3x5x11 | 1 | 2261 | 5* |
430 | 2999 | 2x1499 | 2 | 2287 | 2* |
431 | 3001 | 2^3x3x5^3 | 120 | 2289 | 2* |
432 | 3011 | 2x5x7x43 | 2 | 2298 | 3* |
433 | 3019 | 2x3x503 | 1 | 22A5 | 4* |
434 | 3023 | 2x1511 | 1 | 22A9 | 2* |
435 | 3037 | 2^2x3x11x23 | 4 | 2311 | 2 |
436 | 3041 | 2^5x5x19 | 2 | 2315 | 3 |
437 | 3049 | 2^3x3x127 | 1 | 2322 | 11 |
438 | 3061 | 2^2x3^2x5x17 | 4 | 2333 | 6 |
439 | 3067 | 2x3x7x73 | 1 | 2339 | 4* |
440 | 3079 | 2x3^4x19 | 2 | 234A | 2* |
441 | 3083 | 2x23x67 | 1 | 2353 | 3* |
442 | 3089 | 2^4x193 | 2 | 2359 | 3 |
443 | 3109 | 2^2x3x7x37 | 1 | 2377 | 6 |
444 | 3119 | 2x1559 | 2 | 2386 | 2* |
445 | 3121 | 2^4x3x5x13 | 13 | 2388 | 7 |
446 | 3137 | 2^6x7^2 | 1 | 23A2 | 3 |
447 | 3163 | 2x3x17x31 | 34 | 2416 | 6* |
448 | 3167 | 2x1583 | 2 | 241A | 2* |
449 | 3169 | 2^5x3^2x11 | 18 | 2421 | 7 |
450 | 3181 | 2^2x3x5x53 | 1 | 2432 | 7 |
451 | 3187 | 2x3^3x59 | 6 | 2438 | 2* |
452 | 3191 | 2x5x11x29 | 1 | 2441 | 5* |
453 | 3203 | 2x1601 | 2 | 2452 | 3* |
454 | 3209 | 2^3x401 | 1 | 2458 | 3 |
455 | 3217 | 2^4x3x67 | 8 | 2465 | 5 |
456 | 3221 | 2^2x5x7x23 | 644 | 2469 | 10 |
457 | 3229 | 2^2x3x269 | 1 | 2476 | 6 |
458 | 3251 | 2x5^3x13 | 2 | 2496 | 3* |
459 | 3253 | 2^2x3x271 | 1 | 2498 | 2 |
460 | 3257 | 2^3x11x37 | 2 | 24A1 | 3 |
461 | 3259 | 2x3^2x181 | 3 | 24A3 | 5* |
462 | 3271 | 2x3x5x109 | 3 | 2504 | 5* |
463 | 3299 | 2x17x97 | 2 | 252A | 3* |
464 | 3301 | 2^2x3x5^2x11 | 10 | 2531 | 6 |
465 | 3307 | 2x3x19x29 | 2 | 2537 | 4* |
466 | 3313 | 2^4x3^2x23 | 1 | 2542 | 10 |
467 | 3319 | 2x3x7x79 | 6 | 2548 | 2* |
468 | 3323 | 2x11x151 | 11 | 2551 | 3* |
469 | 3329 | 2^8x13 | 1 | 2557 | 3 |
470 | 3331 | 2x3^2x5x37 | 3 | 2559 | 3 |
471 | 3343 | 2x3x557 | 2 | 256A | 11* |
472 | 3347 | 2x7x239 | 1 | 2573 | 3* |
473 | 3359 | 2x23x73 | 1 | 2584 | 2* |
474 | 3361 | 2^5x3x5x7 | 7 | 2586 | 22 |
475 | 3371 | 2x5x337 | 1 | 2595 | 3* |
476 | 3373 | 2^2x3x281 | 1 | 2597 | 10 |
477 | 3389 | 2^2x7x11^2 | 2 | 2601 | 3 |
478 | 3391 | 2x3x5x113 | 1 | 2603 | 5* |
479 | 3407 | 2x13x131 | 2 | 2618 | 2* |
480 | 3413 | 2^2x853 | 4 | 2623 | 2 |
481 | 3433 | 2^3x3x11x13 | 24 | 2641 | 5 |
482 | 3449 | 2^3x431 | 1 | 2656 | 3 |
483 | 3457 | 2^7x3^3 | 12 | 2663 | 7 |
484 | 3461 | 2^2x5x173 | 5 | 2667 | 2 |
485 | 3463 | 2x3x577 | 3 | 2669 | 9* |
486 | 3467 | 2x1733 | 2 | 2672 | 3* |
487 | 3469 | 2^2x3x17^2 | 6 | 2674 | 2 |
488 | 3491 | 2x5x349 | 1 | 2694 | 3* |
489 | 3499 | 2x3x11x53 | 1 | 26A1 | 4* |
490 | 3511 | 2x3^3x5x13 | 6 | 2702 | 2* |
491 | 3517 | 2^2x3x293 | 1 | 2708 | 2 |
492 | 3527 | 2x41x43 | 2 | 2717 | 2* |
493 | 3529 | 2^3x3^2x7^2 | 2 | 2719 | 17 |
494 | 3533 | 2^2x883 | 1 | 2722 | 2 |
495 | 3539 | 2x29x61 | 2 | 2728 | 3* |
496 | 3541 | 2^2x3x5x59 | 3 | 272A | 7 |
497 | 3547 | 2x3^2x197 | 1 | 2735 | 4* |
498 | 3557 | 2^2x7x127 | 4 | 2744 | 2 |
499 | 3559 | 2x3x593 | 6 | 2746 | 2* |
500 | 3571 | 2x3x5x7x17 | 2 | 2757 | 4* |
501 | 3581 | 2^2x5x179 | 1 | 2766 | 2 |
502 | 3583 | 2x3^2x199 | 6 | 2768 | 2* |
503 | 3593 | 2^3x449 | 1 | 2777 | 3 |
504 | 3607 | 2x3x601 | 2 | 278A | 11* |
505 | 3613 | 2^2x3x7x43 | 4 | 2795 | 2 |
506 | 3617 | 2^5x113 | 8 | 2799 | 3 |
507 | 3623 | 2x1811 | 1 | 27A4 | 2* |
508 | 3631 | 2x3x5x11^2 | 11 | 2801 | 10* |
509 | 3637 | 2^2x3^2x101 | 9 | 2807 | 2 |
510 | 3643 | 2x3x607 | 2 | 2812 | 4* |
511 | 3659 | 2x31x59 | 2 | 2827 | 3* |
512 | 3671 | 2x5x367 | 2 | 2838 | 2* |
513 | 3673 | 2^3x3^3x17 | 1 | 283A | 5 |
514 | 3677 | 2^2x919 | 4 | 2843 | 2 |
515 | 3691 | 2x3^2x5x41 | 2 | 2856 | 4* |
516 | 3697 | 2^4x3x7x11 | 4 | 2861 | 5 |
517 | 3701 | 2^2x5^2x37 | 20 | 2865 | 2 |
518 | 3709 | 2^2x3^2x103 | 3 | 2872 | 2 |
519 | 3719 | 2x11x13^2 | 11 | 2881 | 2* |
520 | 3727 | 2x3^4x23 | 1 | 2889 | 2* |
521 | 3733 | 2^2x3x311 | 6 | 2894 | 2 |
522 | 3739 | 2x3x7x89 | 6 | 289A | 5* |
523 | 3761 | 2^4x5x47 | 1 | 290A | 3 |
524 | 3767 | 2x7x269 | 1 | 2915 | 2* |
525 | 3769 | 2^3x3x157 | 1 | 2917 | 7 |
526 | 3779 | 2x1889 | 2 | 2926 | 2* |
527 | 3793 | 2^4x3x79 | 2 | 2939 | 5 |
528 | 3797 | 2^2x13x73 | 1 | 2942 | 2 |
529 | 3803 | 2x1901 | 2 | 2948 | 3* |
530 | 3821 | 2^2x5x191 | 4 | 2964 | 3 |
531 | 3823 | 2x3x7^2x13 | 6 | 2966 | 9* |
532 | 3833 | 2^3x479 | 8 | 2975 | 3 |
533 | 3847 | 2x3x641 | 6 | 2988 | 2* |
534 | 3851 | 2x5^2x7x11 | 1 | 2991 | 4* |
535 | 3853 | 2^2x3^2x107 | 2 | 2993 | 2 |
536 | 3863 | 2x1931 | 2 | 29A2 | 2* |
537 | 3877 | 2^2x3x17x19 | 2 | 2A05 | 2 |
538 | 3881 | 2^3x5x97 | 20 | 2A09 | 13 |
539 | 3889 | 2^4x3^5 | 1 | 2A16 | 2 |
540 | 3907 | 2x3^2x7x31 | 2 | 2A32 | 4* |
541 | 3911 | 2x5x17x23 | 2 | 2A36 | 2* |
542 | 3917 | 2^2x11x89 | 2 | 2A41 | 2 |
543 | 3919 | 2x3x653 | 3 | 2A43 | 2* |
544 | 3923 | 2x37x53 | 2 | 2A47 | 3* |
545 | 3929 | 2^3x491 | 1 | 2A52 | 3 |
546 | 3931 | 2x3x5x131 | 5 | 2A54 | 4* |
547 | 3943 | 2x3^3x73 | 9 | 2A65 | 9* |
548 | 3947 | 2x1973 | 1 | 2A69 | 3* |
549 | 3967 | 2x3x661 | 2 | 2A87 | 2* |
550 | 3989 | 2^2x997 | 1 | 2AA7 | 2 |
551 | 4001 | 2^5x5^3 | 25 | 3008 | 3 |
552 | 4003 | 2x3x23x29 | 6 | 300A | 4* |
553 | 4007 | 2x2003 | 1 | 3013 | 2* |
554 | 4013 | 2^2x17x59 | 4 | 3019 | 2 |
555 | 4019 | 2x7^2x41 | 1 | 3024 | 4* |
556 | 4021 | 2^2x3x5x67 | 1 | 3026 | 2 |
557 | 4027 | 2x3x11x61 | 1 | 3031 | 6* |
558 | 4049 | 2^4x11x23 | 2 | 3051 | 3 |
559 | 4051 | 2x3^4x5^2 | 3 | 3053 | 5* |
560 | 4057 | 2^3x3x13^2 | 8 | 3059 | 5 |
561 | 4073 | 2^3x509 | 2 | 3073 | 2 |
562 | 4079 | 2x2039 | 1 | 3079 | 2* |
563 | 4091 | 2x5x409 | 2 | 308A | 3* |
564 | 4093 | 2^2x3x11x31 | 2 | 3091 | 2 |
565 | 4099 | 2x3x683 | 2 | 3097 | 4* |
566 | 4111 | 2x3x5x137 | 10 | 30A8 | 2* |
567 | 4127 | 2x2063 | 2 | 3112 | 2* |
568 | 4129 | 2^5x3x43 | 8 | 3114 | 13 |
569 | 4133 | 2^2x1033 | 1 | 3118 | 2 |
570 | 4139 | 2x2069 | 1 | 3123 | 3* |
571 | 4153 | 2^3x3x173 | 3 | 3136 | 5 |
572 | 4157 | 2^2x1039 | 1 | 313A | 2 |
573 | 4159 | 2x3^3x7x11 | 1 | 3141 | 2* |
574 | 4177 | 2^4x3^2x29 | 1 | 3158 | 5 |
575 | 4201 | 2^3x3x5^2x7 | 1 | 317A | 11 |
576 | 4211 | 2x5x421 | 5 | 3189 | 3* |
577 | 4217 | 2^3x17x31 | 2 | 3194 | 5 |
578 | 4219 | 2x3x19x37 | 6 | 3196 | 4* |
579 | 4229 | 2^2x7x151 | 4 | 31A5 | 2 |
580 | 4231 | 2x3^2x5x47 | 2 | 31A7 | 2* |
581 | 4241 | 2^4x5x53 | 5 | 3206 | 3 |
582 | 4243 | 2x3x7x101 | 2 | 3208 | 4* |
583 | 4253 | 2^2x1063 | 1 | 3217 | 2 |
584 | 4259 | 2x2129 | 2 | 3222 | 3* |
585 | 4261 | 2^2x3x5x71 | 10 | 3224 | 2 |
586 | 4271 | 2x5x7x61 | 7 | 3233 | 3* |
587 | 4273 | 2^4x3x89 | 8 | 3235 | 5 |
588 | 4283 | 2x2141 | 1 | 3244 | 3* |
589 | 4289 | 2^6x67 | 1 | 324A | 3 |
590 | 4297 | 2^3x3x179 | 1 | 3257 | 3 |
591 | 4327 | 2x3x7x103 | 3 | 3284 | 2* |
592 | 4337 | 2^4x271 | 16 | 3293 | 3 |
593 | 4339 | 2x3^2x241 | 1 | 3295 | 5* |
594 | 4349 | 2^2x1087 | 2 | 32A4 | 2 |
595 | 4357 | 2^2x3^2x11^2 | 6 | 3301 | 2 |
596 | 4363 | 2x3x727 | 6 | 3307 | 4* |
597 | 4373 | 2^2x1093 | 1 | 3316 | 2 |
598 | 4391 | 2x5x439 | 2 | 3332 | 2* |
599 | 4397 | 2^2x7x157 | 1 | 3338 | 2 |
600 | 4409 | 2^3x7x19x29 | 2 | 3349 | 3 |
601 | 4421 | 2^2x5x13x17 | 1 | 335A | 3 |
602 | 4423 | 2x3x11x67 | 3 | 3361 | 7* |
603 | 4441 | 2^3x3x5x37 | 3 | 3378 | 21 |
604 | 4447 | 2x3^2x13x19 | 1 | 3383 | 2* |
605 | 4451 | 2x5^2x89 | 2 | 3387 | 3* |
606 | 4457 | 2^3x557 | 1 | 3392 | 3 |
607 | 4463 | 2x23x97 | 2 | 3398 | 2* |
608 | 4481 | 2^7x5x7 | 8 | 3404 | 3 |
609 | 4483 | 2x3^3x83 | 6 | 3406 | 4* |
610 | 4493 | 2^2x1123 | 4 | 3415 | 2 |
611 | 4507 | 2x3x751 | 2 | 3428 | 4* |
612 | 4513 | 2^5x3x47 | 8 | 3433 | 7 |
613 | 4517 | 2^2x1129 | 1 | 3437 | 2 |
614 | 4519 | 2x3^2x251 | 1 | 3439 | 9* |
615 | 4523 | 2x7x17x19 | 2 | 3442 | 3* |
616 | 4547 | 2x2273 | 1 | 3464 | 3* |
617 | 4549 | 2^2x3x379 | 1 | 3466 | 6 |
618 | 4561 | 2^4x3x5x19 | 1 | 3477 | 11 |
619 | 4567 | 2x3x761 | 2 | 3482 | 7* |
620 | 4583 | 2x29x79 | 2 | 3497 | 2* |
621 | 4591 | 2x3^3x5x17 | 1 | 34A4 | 2* |
622 | 4597 | 2^2x3x383 | 1 | 34AA | 5 |
623 | 4603 | 2x3x13x59 | 1 | 3505 | 4* |
624 | 4621 | 2^2x3x5x7x11 | 10 | 3521 | 2 |
625 | 4637 | 2^2x19x61 | 1 | 3536 | 2 |
626 | 4639 | 2x3x773 | 2 | 3538 | 2* |
627 | 4643 | 2x11x211 | 1 | 3541 | 3* |
628 | 4649 | 2^3x7x83 | 1 | 3547 | 3 |
629 | 4651 | 2x3x5^2x31 | 1 | 3549 | 5* |
630 | 4657 | 2^4x3x97 | 2 | 3554 | 15 |
631 | 4663 | 2x3^2x7x37 | 2 | 355A | 9* |
632 | 4673 | 2^6x73 | 8 | 3569 | 3 |
633 | 4679 | 2x2339 | 1 | 3574 | 2* |
634 | 4691 | 2x5x7x67 | 1 | 3585 | 3* |
635 | 4703 | 2x2351 | 2 | 3596 | 2* |
636 | 4721 | 2^4x5x59 | 1 | 3602 | 3 |
637 | 4723 | 2x3x787 | 3 | 3604 | 4* |
638 | 4729 | 2^3x3x197 | 3 | 360A | 17 |
639 | 4733 | 2^2x7x13^2 | 4 | 3613 | 5 |
640 | 4751 | 2x5^3x19 | 2 | 362A | 3* |
641 | 4759 | 2x3x13x61 | 6 | 3637 | 5* |
642 | 4783 | 2x3x797 | 1 | 3659 | 2* |
643 | 4787 | 2x2393 | 2 | 3662 | 3* |
644 | 4789 | 2^2x3^2x7x19 | 4 | 3664 | 2 |
645 | 4793 | 2^3x599 | 1 | 3668 | 3 |
646 | 4799 | 2x2399 | 1 | 3673 | 2* |
647 | 4801 | 2^6x3x5^2 | 6 | 3675 | 7 |
648 | 4813 | 2^2x3x401 | 1 | 3686 | 2 |
649 | 4817 | 2^4x7x43 | 1 | 368A | 3 |
650 | 4831 | 2x3x5x7x23 | 14 | 36A2 | 2* |
651 | 4861 | 2^2x3^5x5 | 1 | 371A | 11 |
652 | 4871 | 2x5x487 | 1 | 3729 | 3* |
653 | 4877 | 2^2x23x53 | 4 | 3734 | 2 |
654 | 4889 | 2^3x13x47 | 2 | 3745 | 3 |
655 | 4903 | 2x3x19x43 | 6 | 3758 | 2* |
656 | 4909 | 2^2x3x409 | 2 | 3763 | 6 |
657 | 4919 | 2x2459 | 2 | 3772 | 2* |
658 | 4931 | 2x5x17x29 | 1 | 3783 | 3* |
659 | 4933 | 2^2x3^2x137 | 4 | 3785 | 2 |
660 | 4937 | 2^3x617 | 8 | 3789 | 3 |
661 | 4943 | 2x7x353 | 1 | 3794 | 2* |
662 | 4951 | 2x3^2x5^2x11 | 45 | 37A1 | 2* |
663 | 4957 | 2^2x3x7x59 | 1 | 37A7 | 2 |
664 | 4967 | 2x13x191 | 2 | 3806 | 2* |
665 | 4969 | 2^3x3^3x23 | 1 | 3808 | 11 |
666 | 4973 | 2^2x11x113 | 2 | 3811 | 2 |
667 | 4987 | 2x3^2x277 | 1 | 3824 | 4* |
668 | 4993 | 2^7x3x13 | 1 | 382A | 5 |
669 | 4999 | 2x3x7^2x17 | 7 | 3835 | 9* |
670 | 5003 | 2x41x61 | 1 | 3839 | 3* |
671 | 5009 | 2^4x313 | 4 | 3844 | 3 |
672 | 5011 | 2x3x5x167 | 2 | 3846 | 4* |
673 | 5021 | 2^2x5x251 | 4 | 3855 | 3 |
674 | 5023 | 2x3^4x31 | 18 | 3857 | 2* |
675 | 5039 | 2x11x229 | 1 | 3871 | 2* |
676 | 5051 | 2x5^2x101 | 2 | 3882 | 3* |
677 | 5059 | 2x3^2x281 | 2 | 388A | 4* |
678 | 5077 | 2^2x3^3x47 | 1 | 38A6 | 2 |
679 | 5081 | 2^3x5x127 | 1 | 38AA | 3 |
680 | 5087 | 2x2543 | 1 | 3905 | 2* |
681 | 5099 | 2x2549 | 2 | 3916 | 3* |
682 | 5101 | 2^2x3x5^2x17 | 1 | 3918 | 6 |
683 | 5107 | 2x3x23x37 | 3 | 3923 | 4* |
684 | 5113 | 2^3x3^2x71 | 2 | 3929 | 19 |
685 | 5119 | 2x3x853 | 3 | 3934 | 2* |
686 | 5147 | 2x31x83 | 2 | 395A | 3* |
687 | 5153 | 2^5x7x23 | 14 | 3965 | 5 |
688 | 5167 | 2x3^2x7x41 | 2 | 3978 | 11* |
689 | 5171 | 2x5x11x47 | 1 | 3981 | 4* |
690 | 5179 | 2x3x863 | 3 | 3989 | 4* |
691 | 5189 | 2^2x1297 | 1 | 3998 | 2 |
692 | 5197 | 2^2x3x433 | 2 | 39A5 | 2 |
693 | 5209 | 2^3x3x7x31 | 7 | 3A06 | 2 |
694 | 5227 | 2x3x13x67 | 6 | 3A22 | 4* |
695 | 5231 | 2x5x523 | 2 | 3A26 | 2* |
696 | 5233 | 2^4x3x109 | 3 | 3A28 | 10 |
697 | 5237 | 2^2x7x11x17 | 2 | 3A31 | 3 |
698 | 5261 | 2^2x5x263 | 2 | 3A53 | 2 |
699 | 5273 | 2^3x659 | 4 | 3A64 | 3 |
700 | 5279 | 2x7x13x29 | 26 | 3A6A | 3* |
701 | 5281 | 2^5x3x5x11 | 66 | 3A71 | 7 |
702 | 5297 | 2^4x331 | 1 | 3A86 | 3 |
703 | 5303 | 2x11x241 | 1 | 3A91 | 2* |
704 | 5309 | 2^2x1327 | 1 | 3A97 | 2 |
705 | 5323 | 2x3x887 | 2 | 3AAA | 10* |
706 | 5333 | 2^2x31x43 | 62 | 4009 | 2 |
707 | 5347 | 2x3^5x11 | 1 | 4021 | 6* |
708 | 5351 | 2x5^2x107 | 1 | 4025 | 2* |
709 | 5381 | 2^2x5x269 | 5 | 4052 | 3 |
710 | 5387 | 2x2693 | 2 | 4058 | 3* |
711 | 5393 | 2^4x337 | 2 | 4063 | 3 |
712 | 5399 | 2x2699 | 1 | 4069 | 2* |
713 | 5407 | 2x3x17x53 | 6 | 4076 | 2* |
714 | 5413 | 2^2x3x11x41 | 12 | 4081 | 5 |
715 | 5417 | 2^3x677 | 4 | 4085 | 3 |
716 | 5419 | 2x3^2x7x43 | 2 | 4087 | 5* |
717 | 5431 | 2x3x5x181 | 10 | 4098 | 2* |
718 | 5437 | 2^2x3^2x151 | 2 | 40A3 | 5 |
719 | 5441 | 2^6x5x17 | 5 | 40A7 | 3 |
720 | 5443 | 2x3x907 | 3 | 40A9 | 4* |
721 | 5449 | 2^3x3x227 | 8 | 4104 | 7 |
722 | 5471 | 2x5x547 | 5 | 4124 | 3* |
723 | 5477 | 2^2x37^2 | 1 | 412A | 2 |
724 | 5479 | 2x3x11x83 | 1 | 4131 | 2* |
725 | 5483 | 2x2741 | 1 | 4135 | 3* |
726 | 5501 | 2^2x5^3x11 | 2 | 4151 | 2 |
727 | 5503 | 2x3x7x131 | 1 | 4153 | 9* |
728 | 5507 | 2x2753 | 2 | 4157 | 3* |
729 | 5519 | 2x31x89 | 2 | 4168 | 2* |
730 | 5521 | 2^4x3x5x23 | 1 | 416A | 11 |
731 | 5527 | 2x3^2x307 | 1 | 4175 | 2* |
732 | 5531 | 2x5x7x79 | 5 | 4179 | 5* |
733 | 5557 | 2^2x3x463 | 1 | 41A2 | 2 |
734 | 5563 | 2x3^3x103 | 2 | 41A8 | 4* |
735 | 5569 | 2^6x3x29 | 8 | 4203 | 13 |
736 | 5573 | 2^2x7x199 | 7 | 4207 | 2 |
737 | 5581 | 2^2x3^2x5x31 | 2 | 4214 | 6 |
738 | 5591 | 2x5x13x43 | 1 | 4223 | 2* |
739 | 5623 | 2x3x937 | 6 | 4252 | 2* |
740 | 5639 | 2x2819 | 2 | 4267 | 2* |
741 | 5641 | 2^3x3x5x47 | 2 | 4269 | 14 |
742 | 5647 | 2x3x941 | 3 | 4274 | 2* |
743 | 5651 | 2x5^2x113 | 2 | 4278 | 3* |
744 | 5653 | 2^2x3^2x157 | 1 | 427A | 5 |
745 | 5657 | 2^3x7x101 | 8 | 4283 | 3 |
746 | 5659 | 2x3x23x41 | 3 | 4285 | 4* |
747 | 5669 | 2^2x13x109 | 2 | 4294 | 3 |
748 | 5683 | 2x3x947 | 6 | 42A7 | 4* |
749 | 5689 | 2^3x3^2x79 | 1 | 4302 | 11 |
750 | 5693 | 2^2x1423 | 1 | 4306 | 2 |
751 | 5701 | 2^2x3x5^2x19 | 12 | 4313 | 2 |
752 | 5711 | 2x5x571 | 2 | 4322 | 3* |
753 | 5717 | 2^2x1429 | 1 | 4328 | 2 |
754 | 5737 | 2^3x3x239 | 1 | 4346 | 10 |
755 | 5741 | 2^2x5x7x41 | 5 | 434A | 2 |
756 | 5743 | 2x3^2x11x29 | 1 | 4351 | 2* |
757 | 5749 | 2^2x3x479 | 3 | 4357 | 2 |
758 | 5779 | 2x3^3x107 | 1 | 4384 | 4* |
759 | 5783 | 2x7^2x59 | 2 | 4388 | 2* |
760 | 5791 | 2x3x5x193 | 1 | 4395 | 2* |
761 | 5801 | 2^3x5^2x29 | 2 | 43A4 | 3 |
762 | 5807 | 2x2903 | 2 | 43AA | 2* |
763 | 5813 | 2^2x1453 | 2 | 4405 | 2 |
764 | 5821 | 2^2x3x5x97 | 3 | 4412 | 6 |
765 | 5827 | 2x3x971 | 6 | 4418 | 4* |
766 | 5839 | 2x3x7x139 | 1 | 4429 | 2* |
767 | 5843 | 2x23x127 | 2 | 4432 | 4* |
768 | 5849 | 2^3x17x43 | 1 | 4438 | 3 |
769 | 5851 | 2x3^2x5^2x13 | 26 | 443A | 4* |
770 | 5857 | 2^5x3x61 | 4 | 4445 | 7 |
771 | 5861 | 2^2x5x293 | 4 | 4449 | 3 |
772 | 5867 | 2x7x419 | 1 | 4445 | 3* |
773 | 5869 | 2^2x3^2x163 | 1 | 4456 | 2 |
774 | 5879 | 2x2939 | 1 | 4465 | 2* |
775 | 5881 | 2^3x3x5x7^2 | 3 | 4467 | 31 |
776 | 5897 | 2^3x11x67 | 2 | 4481 | 3 |
777 | 5903 | 2x13x227 | 2 | 4487 | 2* |
778 | 5923 | 2x3^2x7x47 | 1 | 44A5 | 4* |
779 | 5927 | 2x2963 | 1 | 44A9 | 2* |
780 | 5939 | 2x2969 | 2 | 450A | 3* |
781 | 5953 | 2^6x3x31 | 3 | 4522 | 7 |
782 | 5981 | 2^2x5x13x23 | 1 | 4548 | 3 |
783 | 5987 | 2x41x73 | 1 | 4553 | 3* |
784 | 6007 | 2x3x7x11x13 | 13 | 4571 | 9* |
785 | 6011 | 2x5x601 | 1 | 4575 | 4* |
786 | 6029 | 2^2x11x137 | 4 | 4591 | 2 |
787 | 6037 | 2^2x3x503 | 6 | 4599 | 5 |
788 | 6043 | 2x3x19x53 | 53 | 45A4 | 6* |
789 | 6047 | 2x3023 | 2 | 45A8 | 2* |
790 | 6053 | 2^2x17x89 | 2 | 4603 | 2 |
791 | 6067 | 2x3^2x337 | 18 | 4616 | 4* |
792 | 6073 | 2^3x3x11x23 | 6 | 4621 | 10 |
793 | 6079 | 2x3x1013 | 2 | 4627 | 7* |
794 | 6089 | 2^3x761 | 1 | 4636 | 10 |
795 | 6091 | 2x3x5x7x29 | 2 | 4638 | 11* |
796 | 6101 | 2^2x5^2x61 | 1 | 4647 | 2 |
797 | 6113 | 2^5x191 | 1 | 4658 | 2 |
798 | 6121 | 2^3x3^2x5x17 | 2 | 4665 | 2 |
799 | 6131 | 2x5x613 | 1 | 4674 | 3* |
800 | 6133 | 2^2x3x7x73 | 1 | 4676 | 5 |
801 | 6143 | 2x37x83 | 1 | 4685 | 2* |
802 | 6151 | 2x3x5^2x41 | 10 | 4692 | 2* |
803 | 6163 | 2x3x13x79 | 1 | 46A3 | 6* |
804 | 6173 | 2^2x1543 | 1 | 4702 | 2 |
805 | 6197 | 2^2x1549 | 4 | 4724 | 2 |
806 | 6199 | 2x3x1033 | 6 | 4726 | 2* |
807 | 6203 | 2x7x443 | 2 | 472A | 3* |
808 | 6211 | 2x3^3x5x23 | 6 | 4737 | 4* |
809 | 6217 | 2^3x3x7x37 | 3 | 4742 | 5 |
810 | 6221 | 2^2x5x311 | 1 | 4746 | 3 |
811 | 6229 | 2^2x3^2x173 | 4 | 4753 | 2 |
812 | 6247 | 2x3^2x347 | 18 | 476A | 2* |
813 | 6257 | 2^4x17x23 | 2 | 4779 | 3 |
814 | 6263 | 2x31x101 | 1 | 4784 | 2* |
815 | 6269 | 2^2x1567 | 1 | 478A | 2 |
816 | 6271 | 2x3x5x11x19 | 1 | 4791 | 17* |
817 | 6277 | 2^2x3x523 | 3 | 4797 | 2 |
818 | 6287 | 2x7x449 | 2 | 47A6 | 2* |
819 | 6299 | 2x47x67 | 2 | 4807 | 3* |
820 | 6301 | 2^2x3^2x5^2x7 | 4 | 4809 | 10 |
821 | 6311 | 2x5x631 | 10 | 4818 | 2* |
822 | 6317 | 2^2x1579 | 4 | 4823 | 2 |
823 | 6323 | 2x29x109 | 1 | 4829 | 3* |
824 | 6329 | 2^3x7x113 | 2 | 4834 | 3 |
825 | 6337 | 2^6x3^2x11 | 4 | 4841 | 10 |
826 | 6343 | 2x3x7x151 | 2 | 4847 | 2* |
827 | 6353 | 2^4x397 | 1 | 4856 | 3 |
828 | 6359 | 2x11x17^2 | 11 | 4861 | 2* |
829 | 6361 | 2^3x3x5x53 | 24 | 4863 | 19 |
830 | 6367 | 2x3x1061 | 3 | 4869 | 2* |
831 | 6373 | 2^2x3^3x59 | 4 | 4874 | 2 |
832 | 6379 | 2x3x1063 | 2 | 487A | 4* |
833 | 6389 | 2^2x1597 | 4 | 4889 | 2 |
834 | 6397 | 2^2x3x13x41 | 1 | 4896 | 2 |
835 | 6421 | 2^2x3x5x107 | 5 | 4908 | 6 |
836 | 6427 | 2x3^3x7x17 | 17 | 4913 | 6* |
837 | 6449 | 2^4x13x31 | 26 | 4933 | 3 |
838 | 6451 | 2x3x5^2x43 | 1 | 4935 | 6* |
839 | 6469 | 2^2x3x7^2x11 | 44 | 4951 | 2 |
840 | 6473 | 2^3x809 | 2 | 4955 | 3 |
841 | 6481 | 2^4x3^4x5 | 15 | 4962 | 7 |
842 | 6491 | 2x5x11x59 | 11 | 4971 | 3* |
843 | 6521 | 2^3x5x163 | 2 | 4999 | 6 |
844 | 6529 | 2^7x3x17 | 1 | 49A6 | 7 |
845 | 6547 | 2x3x1091 | 2 | 4A12 | 4* |
846 | 6551 | 2x5^2x131 | 2 | 4A16 | 2* |
847 | 6553 | 2^3x3^2x7x13 | 1 | 4A18 | 10 |
848 | 6563 | 2x17x193 | 2 | 4A27 | 10* |
849 | 6569 | 2^3x821 | 1 | 4A32 | 3 |
850 | 6571 | 2x3^2x5x73 | 1 | 4A34 | 10* |
851 | 6577 | 2^4x3x137 | 3 | 4A3A | 5 |
852 | 6581 | 2^2x5x7x47 | 2 | 4A43 | 14 |
853 | 6599 | 2x3299 | 2 | 4A5A | 2* |
854 | 6607 | 2x3^2x367 | 6 | 4A67 | 2* |
855 | 6619 | 2x3x1103 | 2 | 4A78 | 4* |
856 | 6637 | 2^2x3x7x79 | 12 | 4A94 | 2 |
857 | 6653 | 2^2x1663 | 4 | 4AA9 | 2 |
858 | 6659 | 2x3329 | 1 | 5004 | 3* |
859 | 6661 | 2^2x3^2x5x37 | 1 | 5006 | 6 |
860 | 6673 | 2^4x3x139 | 1 | 5017 | 5 |
861 | 6679 | 2x3^2x7x53 | 2 | 5022 | 5* |
862 | 6689 | 2^5x11x19 | 32 | 5031 | 3 |
863 | 6691 | 2x3x5x223 | 1 | 5033 | 4* |
864 | 6701 | 2^2x5^2x67 | 1 | 5042 | 2 |
865 | 6703 | 2x3x1117 | 1 | 5044 | 2* |
866 | 6709 | 2^2x3x13x43 | 3 | 504A | 2 |
867 | 6719 | 2x3359 | 1 | 5059 | 2* |
868 | 6733 | 2^2x3^2x11x17 | 4 | 5071 | 2 |
868 | 6737 | 2^4x421 | 8 | 5075 | 3 |
870 | 6761 | 2^3x5x13^2 | 1 | 5097 | 2 |
871 | 6763 | 2x3x7^2x23 | 7 | 5099 | 4* |
872 | 6779 | 2x3389 | 1 | 5103 | 3* |
873 | 6781 | 2^2x3x5x113 | 2 | 5105 | 2 |
874 | 6791 | 2x5x7x97 | 1 | 5114 | 3* |
875 | 6793 | 2^3x3x283 | 1 | 5116 | 10 |
876 | 6803 | 2x19x179 | 1 | 5125 | 3* |
877 | 6823 | 2x3^2x379 | 9 | 5143 | 2* |
878 | 6827 | 2x3413 | 2 | 5147 | 3* |
879 | 6829 | 2^2x3x569 | 4 | 5149 | 2 |
880 | 6833 | 2^4x7x61 | 1 | 5152 | 3 |
881 | 6841 | 2^3x3^2x5x19 | 3 | 515A | 22 |
882 | 6857 | 2^3x857 | 2 | 5174 | 3 |
883 | 6863 | 2x47x73 | 2 | 517A | 2* |
884 | 6869 | 2^2x17x101 | 4 | 5185 | 2 |
885 | 6871 | 2x3x5x229 | 2 | 5187 | 9* |
886 | 6883 | 2x3x31x37 | 6 | 5198 | 4* |
887 | 6899 | 2x3449 | 2 | 5202 | 3* |
888 | 6907 | 2x3x1151 | 6 | 520A | 4* |
889 | 6911 | 2x5x691 | 1 | 5213 | 2* |
890 | 6917 | 2^2x7x13x19 | 28 | 5219 | 2 |
891 | 6947 | 2x23x151 | 2 | 5246 | 3* |
892 | 6949 | 2^2x3^2x193 | 1 | 5248 | 2 |
893 | 6959 | 2x7^2x71 | 2 | 5257 | 3* |
894 | 6961 | 2^4x3x5x29 | 16 | 5259 | 13 |
895 | 6967 | 2x3^4x43 | 1 | 5264 | 13* |
896 | 6971 | 2x5x17x41 | 2 | 5268 | 4* |
897 | 6977 | 2^6x109 | 4 | 5273 | 3 |
898 | 6983 | 2x3491 | 1 | 5279 | 2* |
899 | 6991 | 2x3x5x233 | 2 | 5286 | 2* |
900 | 6997 | 2^2x3x11x53 | 2 | 5291 | 5 |
901 | 7001 | 2^3x5^3x7 | 4 | 5295 | 3 |
902 | 7013 | 2^2x1753 | 1 | 52A6 | 2 |
903 | 7019 | 2x11^2x29 | 1 | 5301 | 3* |
904 | 7027 | 2x3x1171 | 1 | 5309 | 4* |
905 | 7039 | 2x3^2x17x23 | 6 | 531A | 2* |
906 | 7043 | 2x7x503 | 1 | 5323 | 4* |
907 | 7057 | 2^4x3^2x7^2 | 1 | 5336 | 5 |
908 | 7069 | 2^2x3x19x31 | 3 | 5347 | 2 |
909 | 7079 | 2x3539 | 2 | 5356 | 2* |
910 | 7103 | 2x53x67 | 2 | 5378 | 2* |
911 | 7109 | 2^2x1777 | 2 | 5383 | 2 |
912 | 7121 | 2^4x5x89 | 2 | 5394 | 3 |
913 | 7127 | 2x7x509 | 2 | 539A | 2* |
914 | 7129 | 2^3x3^4x11 | 8 | 53A1 | 3 |
915 | 7151 | 2x5^2x11x13 | 1 | 5411 | 2* |
916 | 7159 | 2x5^2x11x13 | 3 | 5419 | 2* |
917 | 7177 | 2^3x3x13x23 | 46 | 5435 | 10 |
918 | 7187 | 2x3593 | 1 | 5444 | 3* |
919 | 7193 | 2^3x29x31 | 1 | 544A | 3 |
920 | 7207 | 2x3x1201 | 6 | 5462 | 3* |
921 | 7211 | 2x5x7x103 | 10 | 5466 | 3* |
922 | 7213 | 2^2x3x601 | 3 | 5468 | 5 |
923 | 7219 | 2x3^2x401 | 1 | 5473 | 4* |
924 | 7229 | 2^2x13x139 | 13 | 5482 | 2 |
925 | 7237 | 2^2x3^3x67 | 1 | 548A | 2 |
926 | 7243 | 2x3x17x71 | 3 | 5495 | 4* |
927 | 7247 | 2x3623 | 1 | 5499 | 2* |
928 | 7253 | 2^2x7^2x37 | 2 | 54A4 | 2 |
929 | 7283 | 2x11x331 | 1 | 5521 | 3* |
930 | 7297 | 2^7x3x19 | 6 | 5534 | 5 |
931 | 7307 | 2x13x281 | 1 | 5543 | 3* |
932 | 7309 | 2^2x3^2x7x29 | 2 | 5545 | 6 |
933 | 7321 | 2^3x3x5x61 | 915 | 5556 | 7 |
934 | 7331 | 2x5x733 | 1 | 5565 | 4* |
935 | 7333 | 2^2x3x13x47 | 3 | 5567 | 6 |
936 | 7349 | 2^2x11x67 | 4 | 5581 | 2 |
937 | 7351 | 2x3x5^2x7^2 | 15 | 5583 | 4* |
938 | 7369 | 2^3x3x307 | 3 | 559A | 7 |
939 | 7393 | 2^5x3x7x11 | 6 | 5611 | 5 |
940 | 7411 | 2x3x5x13x19 | 2 | 5628 | 4* |
941 | 7417 | 2^3x3^2x103 | 8 | 5633 | 5 |
942 | 7433 | 2^3x929 | 1 | 5648 | 3 |
943 | 7451 | 2x5^2x149 | 1 | 5664 | 4* |
944 | 7457 | 2^5x233 | 1 | 566A | 3 |
945 | 7459 | 2x3x11x113 | 3 | 5671 | 4* |
946 | 7477 | 2^2x3x7x89 | 3 | 5688 | 2 |
947 | 7481 | 2^3x5x11x17 | 2 | 5691 | 6 |
948 | 7487 | 2x19x197 | 2 | 5697 | 3* |
949 | 7489 | 2^6x3^2x13 | 2 | 5699 | 7 |
950 | 7499 | 2x23x163 | 2 | 56A8 | 3* |
951 | 7507 | 2x3^3x139 | 9 | 5705 | 4* |
952 | 7517 | 2^2x1879 | 4 | 5714 | 7 |
953 | 7523 | 2x3761 | 2 | 571A | 3* |
954 | 7529 | 2^3x941 | 2 | 5725 | 3 |
955 | 7537 | 2^4x3x157 | 1 | 5732 | 7 |
956 | 7541 | 2^2x5x13x29 | 5 | 5736 | 2 |
957 | 7547 | 2x11x7^3 | 1 | 5741 | 3* |
958 | 7549 | 2^2x3x17x37 | 6 | 5743 | 2 |
959 | 7559 | 2x3779 | 2 | 5752 | 2* |
960 | 7561 | 2^3x3^3x5x7 | 108 | 5754 | 13 |
961 | 7573 | 2^2x3x631 | 4 | 5765 | 2 |
962 | 7577 | 2^3x947 | 4 | 5769 | 3 |
963 | 7583 | 2x17x223 | 1 | 5774 | 2* |
964 | 7589 | 2^2x7x271 | 1 | 577A | 2 |
965 | 7591 | 2x3x5x11x23 | 3 | 577A | 2* |
966 | 7603 | 2x3x7x181 | 2 | 5792 | 4* |
967 | 7607 | 2x3803 | 2 | 5796 | 2* |
968 | 7621 | 2^2x3x5x127 | 2 | 57A9 | 2 |
969 | 7639 | 2x3x19x67 | 1 | 5815 | 5* |
970 | 7643 | 2x3821 | 1 | 5819 | 3* |
971 | 7649 | 2^5x239 | 2 | 5824 | 3 |
972 | 7669 | 2^2x3^3x71 | 1 | 5842 | 2 |
973 | 7673 | 2^3x7x137 | 7 | 5842 | 3 |
974 | 7681 | 2^9x3x5 | 8 | 5853 | 17 |
975 | 7687 | 2x3^2x7x61 | 1 | 5859 | 2* |
976 | 7691 | 2x5x769 | 2 | 5862 | 3* |
977 | 7699 | 2x3x1283 | 2 | 586A | 5* |
978 | 7703 | 2x3851 | 1 | 5873 | 2* |
979 | 7717 | 2^2x3x643 | 3 | 5886 | 2 |
980 | 7723 | 2x3^3x11x13 | 1 | 5891 | 6* |
981 | 7727 | 2x3863 | 1 | 5895 | 2* |
982 | 7741 | 2^2x3^2x5x43 | 1 | 58A8 | 7 |
983 | 7753 | 2^3x3x17x19 | 8 | 58A8 | 10 |
984 | 7757 | 2^2x7x277 | 1 | 5912 | 2 |
985 | 7759 | 2x3^2x431 | 1 | 5914 | 2* |
986 | 7789 | 2^2x3x11x59 | 6 | 5941 | 2 |
987 | 7793 | 2^4x487 | 4 | 5945 | 3 |
988 | 7817 | 2^3x977 | 1 | 5967 | 3 |
989 | 7823 | 2x3911 | 2 | 5972 | 2* |
990 | 7829 | 2^2x19x103 | 1 | 5978 | 2 |
991 | 7841 | 2^5x5x7^2 | 2 | 5989 | 12 |
992 | 7853 | 2^2x13x151 | 1 | 599A | 2 |
993 | 7867 | 2x3^2x19x23 | 2 | 5A02 | 6* |
994 | 7873 | 2^6x3x41 | 3 | 5A08 | 5 |
995 | 7877 | 2^2x11x179 | 2 | 5A11 | 5 |
996 | 7879 | 2x3x13x101 | 3 | 5A13 | 2* |
997 | 7883 | 2x7x563 | 14 | 5A17 | 3* |
998 | 7901 | 2^2x5^2x79 | 50 | 5A33 | 2 |
999 | 7907 | 2x59x67 | 1 | 5A39 | 3* |
1000 | 7919 | 2x37x107 | 2 | 5A4A | 2* |
Statistické vyhodnocení (n = 1000)
editovat- Délka periody = 0 (neperiodický zlomek pouze s jednocifernou předperiodou) - 0,1 %
- Délka periody maximální: - 36,5 %
- Délka periody poloviční (k/l = 2) - 28,1 %
- Délka periody třetinová (k/l = 3) - 7,1 %
- Délka periody čtvrtinová (k/l = 4) - 7,2 %
- Délka periody pětinová (k/l = 5) - 2,1 %
- Délka periody šestinová (k/l = 6) - 5,4 %
- Délka periody sedminová (k/l = 7) - 1,2 %
- Délka periody osminová (k/l = 8) - 2,5 %
- Délka periody devítinová (k/l = 9) - 0,8 %
- Délka periody desetinová (k/l = 10) - 1,2 %
- Délka periody jedenáctinová (k/l = 11) - 0,6 %
- Délka periody dvanáctinová (k/l = 12) - 0,7 %
- Délka periody třináctinová (k/l = 13) - 0,4 %
- Délka periody čtrnáctinová (k/l = 14) - 0,6 %
- Délka periody patnáctinová (k/l = 15) - 0,3 %
- Délka periody šestnáctinová (k/l = 16) - 0,3 %
- Délka periody sedmnáctinová (k/l = 17) - 0,2 %
- Délka periody osmnáctinová (k/l = 18) - 0,5 %
- Délka periody dvacetinová (k/l = 20) - 0,4 %
- Délka periody jedenadvacetinová (k/l = 21) - 0,1 %
- Délka periody dvaadvacetinová (k/l = 22) - 0,1 %
- Délka periody čtyřiadvacetinová (k/l = 24) - 0,3 %
- Délka periody pětadvacetinová (k/l = 25) - 0,1 %
- Délka periody šestadvacetinová (k/l = 26) - 0,4 %
- Délka periody osmadvacetinová (k/l = 28) - 0,1 %
- Délka periody třicetinová (k/l = 30) - 0,2 %
- Délka periody k/l = 32 - 0,1 %
- Délka periody k/l = 34 - 0,1 %
- Délka periody k/l = 35 - 0,1 %
- Délka periody k/l = 36 - 0,1 %
- Délka periody k/l = 37 - 0,1 %
- Délka periody k/l = 44 - 0,3 %
- Délka periody k/l = 45 - 0,2 %
- Délka periody k/l = 46 - 0,1 %
- Délka periody k/l = 50 - 0,1 %
- Délka periody k/l = 53 - 0,1 %
- Délka periody k/l = 62 - 0,1 %
- Délka periody k/l = 66 - 0,1 %
- Délka periody k/l = 69 - 0,1 %
- Délka periody k/l = 70 - 0,1 %
- Délka periody k/l = 82 - 0,1 %
- Délka periody k/l = 84 - 0,1 %
- Délka periody k/l = 93 - 0,1 %
- Délka periody k/l = 108 - 0,1 %
- Délka periody k/l = 120 - 0,1 %
- Délka periody k/l = 644 - 0,1 %
- Délka periody k/l = 915 - 0,1 %
Sledujte
editovat- Předchozí: Délky period převrácených hodnot prvočísel/Statistika/Statistika soustavy o základu 7, 8, 9, 10
- Následující: Statistika soustavy o základu 12, 13, 14, 15, 121