Číselné soustavy/Unikátní prvočísla: l = 78

Tato stránka není ještě hotová.

Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (naprostá většina z nich je známa od starověku, nepatrný zbytek je znám z počátků novověku); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též en:Repunit a en:Unique prime, příp. Jedničkové číslo (WP). Připomínky jsou vítány - ale raději v diskusi. Tam může kdokoliv i přidávat dotazy či tipy na doplnění. Uvítám i obyčejný komentář kteréhokoliv "kolemjdoucího" o tom, zda je/není článek srozumitelný. kusurija.

Drobečky teorieEditovat

  1. V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 78: 111111111111111111111111111111111111111111111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
  2. Repunity o délce 78: 111111111111111111111111111111111111111111111111111111111111111111111111111111(z) jsou vždy (v každé soustavě) součinem součinem 111111111111111111111111111111111111111 * 1000000000000000000000000000000000000001. . Obě tato čísla jsou v každé soustavě dělitelná dále: první viz U39, druhé je dělitelné číslem 11(z). Tento podíl je vždy ještě dělitelný čísly g1(z) (jehož l = 6) a g0g0g0g0g0g1(z) (jehož l = 26); a výsledek je vždy (včetně dvojkové soustavy, kde má tvar 1010101010100101010101011(2)) ve tvaru 10gbg010gbg00gbg010gbg011, kde g = z - 1 a b = z - 2. Pokud je prvočíslem, jedná se o unikátní prvočíslo (soustavy z) a délka jeho převrácené hodnoty je (l =) 78.
  3. V číselných soustavách, ve kterých 1/13(10) má délku periody l.p. = 6, je číslo 10gbg010gbg00gbg010gbg011(z) vždy dělitelné ještě třinácti a podíl má jiný tvar.
    • Délky p.h. 1/13(10) l.p. = 6 jsou v soustavách 4 a 10 a ve všech dalších, kde z vyhovuje vzorci z = 13n + a, kde a je rovno 4 nebo 10.
    • Vysvětlení/zdůvodnění: v soustavě, ve které má p (v našem případě 13) délku p.h. = l (v našem případě 6), má převrácená hodnota p2 délku periody l * p (v našem případě 6 * 13 = 78).
  4. Stejnou délku p.h. (t.j. 78) má toto prvočíslo p i ve všech soustavách z(2n + 1) (lichý exponent) s výjimkou všech z(3*(2n+1)) (exponent, dělitelný 3), kde je l.p. = 26 a všech z(13*(2n+1)) (exponent, dělitelný 13), kde je l.p. = 6. Totéž platí i pro základy, které jsou modulem výše uvedených k p. Ze všech těchto je právě třicet šest z menších, než p.
  5. Pro (kladné) základy p - z (kde z je některé z uvedených v předchozím bodě) platí, že jejich l.p. je 39.
  6. Zdaleka ne každé číslo 10gbg010gbg00gbg010gbg011(z) je prvočíslem. Faktory takovýchto čísel vždy odpovídají vzorci p = 78n + 1 a jejich délka p.h. v té soustavě = 78.

Tabulka nejmenších unikátních p (U78)Editovat

legenda:

  • p - prvočíslo
  • U - unikátní prvočíslo
  • U78 - unikátní prvočíslo o délce p.h. l = 78
  • z - základ číselné soustavy
  • f - w:faktor
  • k - "kořen" prvočísla, t.j. p - 1 (tento symbol je používán čistě jen k úspoře místa, neboť zápis k/78 zabere méně mista, nežli zápis (p - 1)/78)
  • l.p. délka periody 1/p
  • l.p.(10) délka periody převrácené hodnoty prvočísla p v desítkové soustavě
  • ∙ - znak násobení
  • ^ - znak umocňování; zápis 5^3 je totožný zápisu 53 ( = 125)
Tabulka nejmenších unikátních p 10gbg010gbg00gbg010gbg011(z) nebo jejich třináctin* (U78)
p 22366891 5302306226370307681801 584288727345658049575114801 84159375948762099254554456081 1412364383703504438982118048251 521520871366765737606690427202726006881
z 2 8 13 16 18 41
f k/78 3∙5∙7∙
∙2731
2^2∙3^2∙5^2∙7∙37∙73∙109∙
∙36650387593
2^2∙3∙5^2∙7∙17∙61∙373∙28393∙
∙162399520961
2^3∙3∙5∙7∙17∙97∙257∙421∙673∙859∙
∙90841∙137089
3∙5^3∙7^4∙17∙19∙229∙457∙
∙594941853304891
2^4∙3^2∙5∙7∙29^2∙41∙109∙1723∙1993∙2459∙
∙2479027∙16861951753

Unikátních prvočísel tohoto typu je nekonečně mnoho, stejně jako ostatních unikátních prvočísel.

SledujteEditovat

RepunityEditovat