Číselné soustavy/Unikátní prvočísla: l = 37
Tato stránka není ještě hotová.
Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (naprostá většina z nich je známa od starověku, nepatrný zbytek je znám z počátků novověku); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též en:Repunit. kusurija.
Drobečky teorie
editovat- V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 37: 1111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
- Repunitová prvočísla o délce 37 (1111111111111111111111111111111111111) jsou popsána v článku Číselné soustavy/Repunitová prvočísla: l = 37. Avšak v soustavách z = 37n + 1 jsou repunity 1111111111111111111111111111111111111 vždy součinem 37 * číslo typu 123456789:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:33:34:35:37, kde 1 je (z - 1)/37, 2 = 2*1, 3 = 3*1, 4 = 4*1 atd. až 37 = (36 + 1)*1 . Ne v každé soustavě je takovéto číslo(z) prvočíslo, jako například v soustavě o základu 38: (01:02:03:04:05:06:07:08:09:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:33:34:35:37(38) = 20681861558186805237407813095538883147812221153173966103(10)) je součinem: 25679(10) * 5826391(10) * 138233050898929517126243814850350442620694127(10). Tudíž v soustavě o základu 38 neexistuje unikátní prvočíslo s délkou p.h. l = 37.
- Pokud prvočíslem je, jedná se o unikátní prvočíslo, tedy takové, jehož převrácená hodnota je číslo s periodickým rozvojem, jehož délka je v dané soustavě unikátní, žádné jiné p v té soustvě nemá danou délku periody p.h.
- Pokud číslo typu 123456789:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:33:34:35:37(z) je složené, mají faktory délku p.h. l = 37, tudíž každé z nich není jediné takové p a není v dané soustavě unikátním prvočíslem.
- Prvočísla o délce p.h. l = 37 vždy vyhovují vzorci 74n + 1.
Tabulka nejmenších unikátních p (U37)
editovatlegenda:
- p - prvočíslo
- U - unikátní prvočíslo
- U37 - unikátní prvočíslo o délce p.h. l = 37
- z - základ číselné soustavy
- f - w:faktor
- k - "kořen" prvočísla, t.j. p - 1 (tento symbol je používán čistě jen k úspoře místa, neboť zápis k/74 zabere méně mista, nežli zápis (p - 1)/74)
- l.p. délka periody 1/p
- l.p.(10) délka periody převrácené hodnoty prvočísla p v desítkové soustavě
- ∙ - znak násobení
- ^ - znak umocňování; zápis 5^3 je totožný zápisu 53 ( = 125)
- \
\ - rozdělení jednoho čísla do dvou řádků - C: - číslo složené; jeho faktorizace je příliš náročná, pro účely tohoto projektu její dokončení není důležité
Viz též
editovatTabulka
editovatz | p(10) | f k/74 |
---|---|---|
1111 | 1196452545349082754936559159821007075884727854328508894312\ \049745548471485253150345639750288805096392039505981 |
2∙3^4∙5∙51394989705461∙ ∙388380982403222620493633485453648540499273585792499327786852317128241952209826899424017947 |
2295 | 263126378049319021610202152124935416918767301432886913463172\ \239883191435083479142668415692756881047136156510929238990333 |
2∙3^2∙31∙47∙5214329∙7327319∙C:354860027724185385425117463555830100979820142730\ \9353787691450591979655176573266395118018497672893493 |
Unikátních prvočísel tohoto typu je nekonečně mnoho, stejně jako ostatních unikátních prvočísel.
Sledujte
editovat- Předchozí - Číselné soustavy/Unikátní prvočísla: l = 33, Číselné soustavy/Unikátní prvočísla: l = 34, Číselné soustavy/Unikátní prvočísla: l = 35, Číselné soustavy/Unikátní prvočísla: l = 36
- následující: Číselné soustavy/Unikátní prvočísla: l = 38, Číselné soustavy/Unikátní prvočísla: l = 39, Číselné soustavy/Unikátní prvočísla: l = 40
- Délky period převrácených hodnot prvočísel/Délka l = 37 nebo 74