Krychle s parabolou

Jak používat klasifikační nálepkuTato stránka je součástí projektu:
Příslušnost: všeobecná

Jedná se o hypotetickou abstraktní úlohu z oblasti termodynamiky:

Krychle

editovat

Mějme izolovanou termodynamickou soustavu, tvořenou dutou evakuovanou krychlí: Vnitřní strany krychle jsou ze špatně tepelně vodivého materiálu, černé – tj. pohlcují a vyzařují tepelné záření. Ve stavu termodynamické rovnováhy každá stěna veškerou energii, kterou pohltí, opět vyzáří na ostatní stěny. Je jasné, teplota všech stěn krychle se ustálí na stejné teplotě T0 – dejeme tomu na pokojové teplotě 20 °C. To můžeme kontrolovat teploměry, umístěnými na každé stěně – budou ukazovat stejnou teplotu.

Parabola

editovat

Nyní v jedné straně krychle vytvoříme otvor a do něj vložíme parabolu (tj. parabolický reflektor) se stoprocentní odrazivostí, svým ústím směřující na protější stěnu. Je zřejmé, že samotným umístěním tohoto reflektoru do krychle se termodynamická rovnováha krychle nenaruší, protože reflektor veškerou energii, která na něj dopadne, opět vyzáří. Teplota všech vnitřních stěn krychle proto zůstane stále stejná, T0 = 20 °C.

Horká kulička

editovat

Nyní do ohniska paraboly vložíme kovovou kuličku (s určitou tepelnou kapacitou) o teplotě vyšší, než je teplota stěn krychle, Tmax > T0 – dejme tomu o 100 °C vyšší, tedy Tmax = 120 °C. Je celkem zřejmé, že tepelná energie, vyzařovaná rozehřátou kuličkou, bude parabolou soustřeďována na protilehlou stěnu a ta se začne ohřívat, tj. její teplota se bude pomalu zvyšovat, a to více, než teplota ostatních stěn (které se budou také částečně ohřívat, ale ne tak rychle). Tj. po určitou dobu bude teploměr na protější stěně ukazovat vyšší teplotu, než teploměry na ostatních stěnách. (Po nějakém čase se ovšem přebytečná energie z ohřáté kuličky vyzáří a tepelnými přenosy uvnitř krychle se opět teploty všech stěn (i kuličky) ustálí na nějaké finální teplotě Tfin: T0 < Tfin < Tmax.

Až do tohoto okamžiku se většina lidí shodne na tom, že by myšlenkový experiment mohl mít takovýto průběh.

Studená kulička

editovat

Nyní provedeme podobný myšlenkový experiment, jako byl experiment s horkou kuličkou, s tím rozdílem, že do ohniska paraboly vložíme kuličku studenou, jejíž teplota Tmin bude nižší, než teplota stěn krychle T0, např. rovněž o 100 °C, Tmin < T0.

Toto pokračování našeho myšlenkového experimentu zpravidla rozdělí lidi na dva tábory:

A) Ochlazování protilehlé stěny

editovat

Varianty s horkou a studenou kuličkou jsou symetrické, logicky se tedy začne protilehlá stěna ochlazovat.

Je zřejmé, že po dlouhé době se systém opět musí dostat do rovnovážného stavu, kdy konečná teplota všech stěn bude nižší, než na začátku, a teplem stěn se kulička poznenáhlu ohřeje, tedy Tmin < Tfin < T0.

Otázkou je, jakým způsobem bude v takovém případě ochlazování probíhat. Je jasné, že z přísného fyzikálního pohledu nemůžeme mluvit o tom, že reflektor "vrhá na protilehlou stěnu zimu". Nicméně lze si představit, že reflektor bude sbírat přednostně teplo, vyzářené protilehlou stěnou, a koncentrovat tepelné záření do studené kuličky v jeho ohnisku. Tím pádem na oteplování kuličky bude přispívat protilehlá stěna více, než ostatní stěny, a během ohřívání kuličky bude teploměr na protilehlé stěně klesat rychleji, než teploměry na ostatních stěnách, tedy bude ukazovat nižší teplotu než teploměry na ostatních stěnách, a to do té doby, než se teploty všech stěn vzájemnou výměnou tepla vyrovnají (spolu s kuličkou) na stejné finální teplotě a systém tím pádem opět přejde do termodynamicky rovnovážného stavu.

B) Protilehlá stěna se nebude ochlazovat více

editovat

Protilehlá stěna se nebude ochlazovat více, než ostatní stěny, a to právě z toho důvodu, že reflektor žádnou zimu vrhat nemůže, právě proto, že zima sama o sobě jakožto nějaká fyzikální veličina neexistuje. Výše uvedená argumentace je scestná.

Jelikož jsem sám autorem a zastáncem odpovědi A), předpokládám, že zastánci odpovědi B) budou tuto odpověď dále precizovat, případně ji podepřou dalšími argumenty. Je také možné, že někdo další přijde s dalšími mořnostmi C), D) atd. --Kychot (diskuse) 25. 9. 2019, 05:50 (UTC)

Další analogie

editovat

Zkusíme vymyslet další analogické příklady na to, jak něco a nedostatek něčeho působí či se jeví jako dvě protikladné entity – podobně jako třeba v oblasti teologie, filosofie či etiky se zlo může jevit buď jako nedostatek dobra anebo jako entita, bojující proti dobru. Zde ale nebudeme vybočovat z oblasti fyziky a zkusíme hledat analogie z jejích ostatních partií a zkusíme si je porovnat s naším příkladem.

Antény

editovat

V radiotechnice je známý teorém, že přijímací anténa se může použít jako vysílací a vice versa. Rozdíl je pouze v použití antény – zda do ní energii z vysílače přivádím anebo z ní energii odvádím do přijímače. (V tuto chvíli neřešíme samozřejmě problémy s účinností či s výkonovým zatížením – jak velký výkon je schopna daná anténa vyzářit.)

Můžeme si tedy náš myšlenkový experiment s teplou a studenou kuličkou modifikovat ta, že do ohniska paraboly umístíme nějakou širokopásmovou anténu (jak vídáme např. u satelitních přijímačů na domech). Analogie s teplou kuličkou bude ta, že budeme do antény energii přivádět (dejme tomu formou mikrovln), a v analogii se studenou kuličkou budeme energii odvádět. Je zřejmé, že tepelné infračervené záření má stejnou elektromagnetickou povahu a tak by to mělo fungovat podobně. Je jasné, že přiváděním a odváděním energie už systém nebude izolovaný, ale je možno tím simulovat výdej tepla, akumulovaného v teplé kuličce (resp. jeho akumulaci ve studené kuličce).

Při přivádění energie do antény je zřejmé, že ta bude vysílat do protilehlé stěny, kde se bude energie absorbovat a ohřívat ji. Ve druhém případě (odvádění energie z antény např. do zatěžovacího odporu) bude anténa preferenčně přijímat energii z protilehlé stěny a tím ji více ochlazovat, než jiné stěny.