Číselné soustavy/Unikátní prvočísla: l = 1024

Tato stránka není ještě hotová.

Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (jsou známy z počátku tohoto 21. stojetí); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též Viz též en:Repunit a en:Unique prime, příp. Jedničkové číslo (WP). Připomínky jsou vítány - ale raději v diskusi. Tam může kdokoliv i přidávat dotazy či tipy na doplnění. Uvítám i obyčejný komentář kteréhokoliv "kolemjdoucího" o tom, zda je/není článek srozumitelný. kusurija.

Drobečky teorie

editovat
  1. V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 1024: 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
  2. Repunity o délce 1024: 1[1024](z) jsou vždy (v každé soustavě) součinem 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 * 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001. Ne v každé soustavě je z512 + 1 prvočíslo, tak jak tomu například není ani v desítkové soustavě.
  3. Pokud prvočíslem je, jedná se o unikátní prvočíslo, tedy takové, jehož převrácená hodnota je číslo s periodickým rozvojem, jehož délka je v dané soustavě unikátní, žádné jiné p v té soustvě nemá danou délku periody p.h.
  4. Pokud číslo z512 + 1 je složené, mají v sudých soustavách faktory délku p.h. l = 1024, tudíž každé z nich není jediné takové p a není v dané soustavě unikátním prvočíslem.
  5. V lichých soustavách je pochopitelně vždy jedním z faktorů číslo 2. To však v dané soustavě má vždy l = 1 (ne 1024). Podíl je (z512 + 1)/2 je vždy ve tvaru (z/2-1/2)(opakováno 511krát):z/2+1/2, tedy v trojkové soustavě 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112(3) (1 = 3(10)/2 - 1/2) (2 = 3(10)/2 + 1/2; 1 = 10(3)/2 - 1/2) (2 = 10(3)/2 + 1/2), v jedenáctkové soustavě 555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556(11) atd... Obecná značka: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab, kde b=a+1.
  6. Pokud tento podíl je prvočíslem, je v dané soustavě unikátním prvočíslem, v opačném případě není.
  7. Prvočísla o délce p.h. l = 1024 vždy vyhovují vzorci 1024n + 1.

Příklad prvočísla o délce p.h. l = 1024

editovat

V šestačtyřicítkové soustavě (v soustavě o základu 46) má číslo 214787904487984112193540531250449200585163560043220215815339231361768378605224638876971176382170991269979785933423673531521668404352746067484014881268040978327338610009463489049252789936442586632275820120297391128316185424860852043421247626079668353070728713719059781494952759066058422172713448344461323628275824562864720436729160306772330447966421258735740916542193562977151566875350961770268744214325327721569767452362139080286009082050240440587743428596921469024323097363183827553144318788579206744625191993812117171630176152799003525665271186789914612726487964808675394856960618947524678336727199001619181567987600062098969915247851892800052895173228818473598255571221601883135439986564465835816136633242947157617916455044811341454230243467188048388619046780678481815666741434257215971899770712978897341386077435893077207536500414775193289480994817(10) (o 852 cifrách) = 01:(00:)[511]01(46) (o 513 cifrách) délku periody převrácené hodnoty l = 1024. Unikátních prvočísel tohoto typu je nekonečně mnoho* (tato nekonečnost má ovšem velmi řídkou "hustotu"; všechna taková prvočísla jsou značně veliká a proto značná část z nich je nedostupná pro objevení a konfirmaci současnými technickými možnostmi), stejně jako ostatních unikátních prvočísel. *Ve vztahu k dvojkové soustavě, Pierre de Fermat vytvořil teorii (viz Fermat number - Fermatova čísla), že 2^(2^n) + 1 je prvočíslo. To ovšem platí pouze pro n = 0 (3), 1 (5), 2 (17), 3 (257) a 4 (65537); pro další známá Fermatova čísla to neplatí (n = 5 až 11 - jsou známy všechny faktory, pro n = 12 až 32 je známo, že nejsou prvočísly, ačkoliv nejsou známy všechny faktory; pro n = 20 a n = 24 nejsou známy žádné faktory). Podobný jev pro další číselné soustavy se nazývá generalizované Fermatovo číslo.

Sledujte

editovat