Uživatel:Jakuba Škrdla/Úvahy/Matematické důkazy
Dokazování je založeno na usuzování.Každý důkaz se skládá z řady úsudků. V nejednodušším případě je úsudkem jediným.
Namísto experimentu
editovatOd dob řecké antiky se matematické poznatky neověřují pomocí experimentů s hmotnými objekty.A přesto matematika není odtržena od reálného světa.Například věta o jediném průsečíku tří výšek v trojúhelníku se nedokazuje tak,že narýsujeme sto trojúhelníků a v každém sestrojíme takový průsečík.a přesto matematika není odtržena od reálného světa.
Lepší metoda
editovatStanovíme bez důkazu základní matematické poznatky reflektující realitu.Jestliže z těchto poznatků vyvozujeme další poznatky pomocí pravidel pro správné usuzování,tak i takto získané matematické poznatky vystihují vztahy v reálném světě.
Jestliže nepoužijeme správné základní poznatky,pak ani správné usuzování nemusí vést k dobrým výsledkům.
Příkladem použití nesprávného základního poznatku je argumentování tím,že nejsem turecký paša.Např.takto:"Jestliže jsi to zvládl sám,pak jsem turecký paša.Nejsem turecký paša,tudíž jsi to nezvládl sám".Úspěšnost používání matematických poznatků v praxi s konečnou platností potvrzuje pravdivost matematického teoretického poznání.
Důkaz výroku
editovatÚvaha,která ukazuje že pravdivost výroku je logickým důsledkem pravdivosti jiných již známých výroků, se nazývá důkazem výroku.
Dva základní způsoby důkazů výroků byly objeveny a v praxi ověřeny již v dávném starověku.Jso to:
1.přímý důkaz 2.důkaz sporem.
Základní důkazy
editovat1.Přímý důkaz Jestliže platí výrok A,platí i výrok B. Výrok A platí. --------------------------------------- Platí tedy i výrok B.
2.Důkaz sporem Jestliže neplatí výrok B,platí výrok C. Výrok C neplatí. ---------------------------------------- Tedy platí výrok B.
Antická interpretace
editovatPřenesme se v představě do starověkých Athén,kde občan F chce přimět občana B k cestě do zámoří.A ví,že může buď využít jeho přátelství s občanem A nebo jeho soupeření s občanem C.Rozhovor F s B může proběhnout třeba takto:
1.Přímý důkaz 2.Důkaz sporem F:Platí tvůj slib,že pojede-li A,pojedeš také? F:Když nepojedeš ty,pojedeC. B:Samozřejmě že platí. B:Nedopustím,aby C jel.Pojedu já. F:Vím,že A pojede. B:Tedy pojedu já. A implikuje B Neg B implikuje C A Neg C ------------- ------------------ B B
Dva základní typy důkazů tedy lze popsat pomocí dvou základních lidských vztahů:přátelství a soupeření.
Pokračování v článku Matematické důkazy 2.